LncRNAs, pseudogenes, and miRNAs participate a fundamental function in tumorigenesis, metabolism, and invasion of cancer cells, although their regulation of tumor glycolysis in prostate adenocarcinoma (PRAD) is thoroughly not well studied. In this study, we applied transcriptomic, proteomic, and medical information to identify glycolysis-related key genes and modules associated with PRAD. Then, the glycolysis-related lncRNA/lncRNAs/pseudogenes-miRNA-mRNA network was constructed. Analysis of DNA methylation status and expression data determined a DNA methylation-dysregulated three-DE-mRNAs signature for predicting diagnosis, ANGPTL4, GNE, and HSPA in PRAD patients and healthy control. Several lncRNAs/pseudogenes, significantly correlated with the overall survival PVT1, CA5BP1, MIRLET7BHG, SNHG12, and ZNF37BP and disease-free survival status, MALAT1, GUSBP11, MIRLET7BHG, and SNHG1, of patients with PRAD were determined. The methylation profile of DE-lncRNA/pseudogenes was significantly proper for predicting PRAD prognostic model. The transcription level of 6 DE-mRNA ANGPTL4, QSOX1, BIK, CLDN3, DDIT4, and TFF3 was correlated with cancer-related fibroblast infiltration in PRAD. The mutated form of 7 mRNAs, COL5A1, IDH1, HK2, DDIT4, GNE, and QSOX1, was associated with PRAD. In addition to the glycolysis pathway, DE-RNAs play regulatory roles on several pathways, including DNA damage, RTK, cell cycle, RAS/MAPK, TSC/mTOR and PI3K/AKT, AR hormone, and EMT. Overall, our study improves our knowledge of the relation between lncRNAs/pseudogenes and miRNA related to glycolysis and PRAD pathogenesis.