Chronic hepatitis B virus (HBV) infection is a global health issue with limited therapeutic options given the persistence of viral episomal DNA (cccDNA). Previously, we investigated the effects of adeno-associated virus 2 (AAV2) vector-mediated delivery of three guide (g)RNAs/Cas9 selected from 16 gRNAs. AAV2/WJ11-Cas9 effectively suppressed HBV replication in vitro and in humanized chimeric mouse livers. In the present study, we examined the effect of AAV2/WJ11-Cas9 on the acute phase of HBV genotype F infection in an immunocompetent northern tree shrew (Tupaia belangeri; hereafter, "tupaia") model. AAV2/WJ11-Cas9 treatment significantly reduced the HBV viral load in serum at 1, 7, 10, and 14 days post-infection (dpi). HBV-F infection caused enlargement of hepatocytes and mild lymphocytic infiltration in the interlobular connective tissue. Thus, the virus damages hepatocytes and drives infection progression and HBV core antigen (HBcAg) accumulation, which were not observed in AAV2/WJ11-Cas9 treated and normal liver tissues. AAV2/WJ11-Cas9 treatment reduced HBV DNA and cccDNA in liver tissues, as well as serum levels of HBV surface antigen and HBV core-related antigen (HBcrAg), including HBcAg and HBeAg at 14 dpi. Anti-HBc, anti-HBs, and anti-AAV Abs production was also detected. AAV2/WJ11-Cas9 treatment suppressed inflammatory cytokines and TLR1, TLR2, TLR3, TLR4, TLR6, TLR7, and TLR9 mRNA levels. Thus, WJ11/Cas9 delivered by AAV2 vectors may provide a new therapeutic approach for inhibiting HBV infection in immunocompetent animal models, which could be developed for use in humans through further translational research.