Acute lung injury (ALI) has been a hot topic in the field of critical care research in recent years. Mitochondrial dynamics consists of mitochondrial fusion and mitochondrial fission. Dynamin-related protein 1 (Drp1), a key molecule that regulates mitochondrial fission, is important in the oxidative stress and inflammatory response to ALI. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a core protein that mediates mitochondrial biogenesis. G-protein pathway suppressor 2 (GPS2) acts as a transcriptional cofactor with regulatory effects on nuclear-encoded mitochondrial genes. This study aimed to investigate the mechanism of PGC-1α/Drp1-mediated mitochondrial dynamics involved in ALI and to demonstrate the protective mechanism of GPS2 in regulating mitochondrial structure and function and inflammation in ALI. The ALI model was constructed using LPS-induced wild-type mice and human pulmonary microvascular endothelial cells (HPMVECs). It was found that lung injury, oxidative stress and inflammation were exacerbated in the mice ALI model and that mitochondrial structure and function were disrupted in HPMVECs. In vitro studies revealed that LPS led to the upregulated expression of Drp1 and the downregulated expression of PGC-1α and GPS2. Mitochondrial division was reduced and respiratory function was restored in Drp1 knockdown cells, which inhibited oxidative stress and inflammatory response. In addition, the overexpression of PGC-1α and GPS2 significantly inhibited the expression of Drp1, mitochondrial function was restored, and inhibited reactive oxygen species (ROS) production and inflammatory factor release. Moreover, the overexpression of GPS2 promoted the upregulated expression of PGC-1α. This mechanism was also validated in vivo, in which the low expression of GPS2 in mice resulted in the upregulated expression of Drp1 and the downregulated expression of PGC-1α, and further exacerbated LPS-induced ALI. In the present study, we also found that LPS-induced the downregulated expression of GPS2 may be associated with its increased degradation by the proteasome. Therefore, these findings revealed that GPS2 inhibited oxidative stress and inflammation by modulating PGC-1α/Drp1-mediated mitochondrial dynamics to alleviate LPS-induced ALI, which may provide a new approach to the therapeutic orientation for LPS-induced ALI.