Vitamin D plays a pivotal role to maintain skeletal muscle integrity and health. Vitamin D deficiency characterizes inflammatory myopathy (IM) and diabetes, often overlapping diseases involving skeletal muscle damage. Vitamin D receptor (VDR) agonists likely exert beneficial effects in both IM and metabolic disturbances. We aim to evaluate in vitro the effect of elocalcitol, a non-hypercalcemic VDR agonist, on the biomolecular metabolic machinery of human skeletal muscle cells (Hfsmc), vs. insulin (I). We analyzed GLUT4, Flotillin-1, Caveolin-3 and Caveolin-1 cell expression/localization; mTOR, AKT, ERK and 4E-BP1 phosphorylation; IL-6 myokine release; VDR expression. We investigated in vivo vitamin D status in IM subjects, evaluating VDR muscular expression and serum vitamin D with metabolism-related parameters, as glycemia, triglycerides, cholesterol, resistin and adiponectin. In Hfsmc, elocalcitol exerted an I-like effect, promoting GLUT4 re-localization in Flotillin-1, Caveolin-3 and Caveolin-1 positive sites and mTOR, AKT, ERK, 4E-BP1 activation; it enhanced IL-6 myokine release. IM subjects, all normoglycemic, showed VDR/vitamin D deficiency that, together with high lipidemic and resistin profile, possibly increases the risk to develop metabolic diseases. VDR agonists as elocalcitol may be therapeutic tools for skeletal muscle integrity/function maintenance, an indispensable condition for health homeostasis.