Hemostatic powders are widely used in incompressible or irregularly shaped bleeding wounds, but traditional hemostatic powders exhibit low adhesion, unsatisfactory hemostatic effect, limited infection control, and are not suitable for clinical or emergency situations. This study developed a novel self-gelling hemostatic powder (QTPM) consisting of quaternized cellulose (QC)/ tannic acid (TA)/ polyethylene glycol (PEG)/ montmorillonite (MMT). QTPM could absorb interfacial liquid hydrating to a stable hydrogel which form a switchable adhesion to tissues. Moreover, QTPM exhibits excellent antibacterial property by the synergistic effect of QC and TA. Furthermore, QTPM directly activate intrinsic and extrinsic coagulation hemostatic pathways to enhance hemostasis, and it concentrate coagulation factors. In vivo hemostasis study results show that QTPM significantly accelerated hemostasis and reduced blood loss compared with the blank group (>75 % reduction in hemostatic time, >85 % reduction in blood loss) in liver bleeding model (hemostasis time of 71.67 ± 7.09 s, blood loss of 19.23 ± 2.60 mg) and tail amputation model (hemostasis time of 91.03 ± 12.05 s, blood loss of 15.24 ± 1.77 mg). Therefore, the advantages of QTPM including rapid and effective hemostasis, easy usage, easy storability and adaptability make it a potential biomaterial for rapid hemostasis direction in the clinical setting.