ABSTRACT:
The increase in urinary tract infections (UTI) caused by antibiotic-resistant
Escherichia coli
requires the development of new therapeutic agents and prophylactic vaccines. To evaluate the efficacy of new lead candidates, we implemented a cynomolgus macaque UTI challenge model that mimics human uncomplicated cystitis in response to transurethral challenge with a multidrug-resistant (MDR)
E. coli
serotype O25b ST131 isolate.
E. coli
fimbrial adhesin FimH and O-antigens are separately under clinical evaluation by others as vaccine candidates to prevent UTI and invasive urosepsis disease, respectively. Accordingly, we assessed the protective efficacy of three 50-µg intramuscular doses of a novel recombinant FimH antigen adjuvanted with liposomal QS21/MPLA compared with saline placebo in groups of nine animals. A third group was vaccinated with this FimH formulation in combination with 1 µg each of a four-valent mixture of serotype O1a, O2, O6, and O25b O-antigen CRM
197
lattice glycoconjugates. Both vaccines elicited high levels of serum FimH IgG and adhesin blocking antibodies at the time of bacterial challenge and, for the combination group, O-antigen-specific antibodies. Following bacterial challenge, both vaccinated groups showed >200- and >700-fold reduction in bacteriuria at day 2 and day 7 post-infection compared with placebo, respectively. In parallel, both vaccines significantly reduced levels of inflammatory biomarkers IL-8 and myeloperoxidase in the urine at day 2 post-infection relative to placebo. Results provide preclinical proof-of-concept for the prevention of an MDR UTI infection by these new vaccine formulations.