To enhance the stability of coenzyme Q10 (CoQ10), Kolliphor® HS 15 (HS15) was employed as a carrier to build up a stable CoQ10-loaded micelle delivery system. The impact of micellar compositions, the preparation condition, and the preparation method on size characteristics, the solubilization efficiency, and micellar stability were investigated. The optimal preparation conditions were 1:6, 4, 0.2%, 118°C, and 25 min for CoQ10/HS15 mass ratio, pH value, the concentration of glucose, and the sterilization conditions. Upon these conditions, the particle size, polydispersity index (PDI), zeta potential, the entrapment efficiency, drug loading, and the critical micelle concentration (CMC) of CoQ10-loaded micelles were 19.76 nm, 0.112, -3.405 mV, 99.39%, 13.77%, and 5.623 × 10(-4) g/mL, respectively. Differential scanning calorimetry (DSC) analysis collectively corroborated that CoQ10 was entrapped into the micelles in amorphous form. The release pattern of drug was analyzed and proved to follow the first order. Additionally, the samples were exposed to the temperatures of 30°C for 6 months with more significant impact on their stabilities as compared to 4 and 25°C based on particle size and PDI. Under constant humidity with light protection long-term (25 ± 2°C, relative humidity (RH) 60 ± 10%, 18 months) conditions, there was no variation except minor changes of CoQ10 content of the samples. The shelf life of the micellar samples could be predicted as 24 months based on the stability results. Consequently, the CoQ10-loaded micelles showed excellent stabilities below 25°C as a potential drug candidate for further clinical applications.