AbstractWe have identified a novel HLA-A*02:01-restricted CD8 T-cell epitope encompassing the H3.3K27M mutation and a corresponding high-affinity T-cell receptor (TCR) that recognizes the epitope. While the development of adoptive cell transfer therapy using TCR-transduced T-cells holds a promise, we still need to overcome multiple challenges, such as suboptimal T-cell trafficking and the immunosuppressive environment of malignant glioma. For example, tumor-associated macrophages (TAMs) mediate immunosuppression but do not function as effective antigen-presenting cells. We have developed a novel cholesteryl pullulan (CHP) nanogel as a highly biocompatible and efficient vaccine delivery system targeting TAMs. In this study, we investigated whether the CHP nanogel loaded with the H3.3K27M peptide would deliver the peptide to TAMs and convert TAMs to better antigen-presenting cells that enhance the anti- H3.3K27M+ glioma activity of the TCR-transduced T-cells. As a clinically relevant mouse model, we used HLA-A2/HLA-DR1-transgenic mice and generated a syngeneic glioma cell line that expresses H3.3K27M from their astrocytes. We also generated a retroviral vector encoding the H3.3K27M-specific TCR for transduction of mouse T cells. HLA-A2/HLA-DR1-transgenic mice bearing day 16 intracerebral H3.3K27M+ glioma received an intravenous administration of the CHP nanogel along with poly-ICLC, a Toll-like receptor 3 agonist. The mice then received an intravenous infusion of TCR-transduced or control, non-transduced T-cells on the following day. The triple combination regimen with the CHP, poly-ICLC and TCR-transduced T-cells significantly suppressed the tumor growth, associated with increased levels of T-cell infiltration into the tumors compared with the dual-therapy with poly-ICLC and TCR-T-cells without the CHP. Furthermore, TAMs isolated from CHP-treated mice showed evidence of CHP-uptake, abilities to stimulate proliferation of TCR-transduced T-cells, and higher levels of HLA.A2 expression. These results suggest that the antigen-loaded CHP nanogel can promote the local antigen-presentation to T-cells and represent a promising approach for improving the efficacy of adoptive T-cell therapy for gliomas.