ETHNOPHARMACOLOGICAL RELEVANCEWithin Anemarrhena asphodeloides Bunge (AAB), the pivotal bioactive constituents are identified as Anemarrhena asphodeloides Bunge total saponins (ABS). In traditional pharmacology, ABS has exhibited notable anti-inflammatory, hypoglycemic, and cardioprotective properties. Despite these observed effects, the specific protective mechanisms of ABS against metabolic diseases and improving the endocrine system remain largely uncharted.AIM TO STUDYThis work intends to shed light on the effects and intrinsic mechanisms of ABS on metabolic diseases.MATERIALS AND METHODSThe characterization of ABS components was achieved through High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS). To evaluate ABS's anti-inflammatory efficacy, mouse macrophages underwent analysis using the Griess method. Induced differentiation of mouse fibroblasts was assessed through Oil Red O staining. In an obesity model with C57BL/6 N mice, ABS administration prompted measurements of glucose and insulin tolerance. Western blot analysis quantified lipolysis and anti-inflammatory protein expression. Nile red staining gauged body fat content in C. elegans post-ABS treatment. The mechanism of ABS action was elucidated through mRNA sequencing, further validated using RNA interference technology, and nematode mutants.RESULTSABS showcased the ability to diminish Nitric Oxide (NO) production in inflammatory macrophages and shrink adipocyte lipid droplets. In mice experiments, ABS was effective in alleviating fat accumulation and affecting serum lipid metabolism in diabetic mice. It enhanced oral glucose tolerance and insulin tolerance while increasing lipolysis-associated protein expression. ABS notably reduced fat content in C. elegans. Mechanistically, ABS downregulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and monoamine oxidase A (MAOA) expression while enhancing UGT, ilys-2, and ilys-3. Lipolysis emerged as a pivotal pathway for ABS in the therapeutic intervention of metabolic diseases.CONCLUSIONSOur investigation has revealed that ABS exert a role in combating metabolic diseases by enhancing the body's defense mechanisms. ABS activate the NLRP3-neurotransmitter-visceral adipose pathway in mice, thereby bolstering resistance and diminishing fat accumulation. In C. elegans, ABS downregulated the expression of MAOA, bolstered resistance, and augmented glucuronidase activity, consequently leading to a reduction in fat content.