Natural products containing complex mixtures of potentially bioactive compounds are a major source of new drugs, however, conventional screening for active compounds is a time-consuming and inefficient process. Here, we reported that a facile and efficient protein affinity-ligand oriented-immobilization strategy based on the SpyTag/SpyCatcher(ST/SC) chemistry, was used for bioactive compound screening. Two ST-fused model proteins, that is, GFP (green fluorescent protein) and PqsA (a critical enzyme in the quorum sensing pathway of Pseudomonas aeruginosa), were used to verify the feasibility of this screening method. GFP, as the capturing protein model, was ST-labeled and anchored at a specific orientation onto the surface of activated agarose coupled with SC protein via ST/SC self-ligation. The affinity carriers were characterized by infrared spectroscopy and fluorography. The spontaneity and site-specificity of this unique reaction were confirmed via electrophoresis and fluorescence analyses. Although the alkaline stability of the affinity carriers was not ideal, its pH stability was acceptable under pH < 9. The general preparation strategy of this affinity carriers was validated by replacing GFP with PqsA, and PqsA inhibitor, 2-amino-6-fluorobenzoic acid, was successfully isolated from the fermentation broth. The proposed strategy can immobilize protein ligands in one-step and screen compounds that interact specifically with the ligands.