AbstractThymosin alpha 1 (Tα1) is a biological response modifier that has been introduced into markets for treating several diseases. Given the short serum half-life of Tα1 and the rapid development of Fc fusion proteins, we used genetic engineering method to construct the recombinant plasmid to express Tα1-Fc (Fc domain of human IgG4) fusion protein. A single-factor experiment was performed with different inducers of varying concentrations for different times to get the optimal condition of induced expression. Pure proteins higher than 90.3% were obtained by using 5 mM lactose for 4 h with a final production about 160.4 mg/L. Thein vivoserum half-life of Tα1-Fc is 25 h, almost 13 times longer than Tα1 in mice models. Also, the long-acting protein has a stronger activity in repairing immune injury through increasing number of lymphocytes. Tα1-Fc displayed a more effective antitumor activity in the 4T1 and B16F10 tumor xenograft models by upregulating CD86 expression, secreting IFN-γ and IL-2, and increasing the number of tumor-infiltrating CD4+ T and CD8+ T cells. Our study on the novel modified Tα1 with the Fc segment provides valuable information for the development of new immunotherapy in cancer.