Perfluorooctane sulfonate (PFOS) exposure is associated with harmful hepatic outcomes. Growing evidence indicates that crosstalk between the gut microbiome, immune system, and liver plays a vital role in the pathogenesis of liver diseases. However, the underlying mechanism is not fully understood. In the present study, we aimed to investigate the effects of PFOS exposure during pregnancy and lactation on hepatic inflammation in rat offspring. Features of hepatic inflammation and increased levels of aspartate-amino transferase (AST) were found in pups on postnatal day 28 (PND28) in PFOS-exposed groups. Gut microbiota analysis identified Chitinophaga, Ralstonia, and Alloprevotella as the key genera in distinguishing the PFOS-exposed group from the control group. Metabolic and transcriptomic analyses found that PFOS exposure resulted in 48 differentially expressed metabolites (DEMs) in the serum, 62 DEMs in the liver, and 289 differentially expressed genes (DEGs) in the liver of PND28 pups. The immune response is significantly enriched in PFOS-exposed liver on PND28; multi-omics analysis indicated that PFOS might lead to immune response perturbation by disturbing the metabolic profiling in the liver. The changed gut microbiota was significantly related to the serum level of the liver function index. Specifically, Alloprevotella, Chitinophage, Ruminococcus, and Allobaculum were significantly associated with the metabolic abundance changes of 4-Hydroxydebrisoquine, L-Norvaline, and Eremopetasinorol, and the gene expression changes of Acat211, Msmol, Idi1, Sqle, and Gadd45b in the liver. These findings suggest that early-life PFOS exposure may be associated with adverse hepatic inflammation in young offspring via disruption of the gut-liver crosstalk, which may provide mechanistic clues for clarifying the hepatotoxicity in offspring associated with perinatal PFOS exposure.