Anti-drug antibody (ADA) positivity is correlated with disease relapse risk when treated with monoclonal antibody (mAb) therapeutics. ADA evaluation can assist with interpreting pharmacokinetic, pharmacological, and toxicology results. Here, we established an ADA assay based on two steps of acid dissociation combined with a bridging immunoassay to provide a comprehensive validation strategy. The three-tiered sample analysis process included screening, confirmation, and titration assays using therapeutic HLX26 (targeting lymphocyte activation gene-3 [LAG-3]) as an example. The cut points were determined by testing 50 individual normal human serum samples, including screening cut point (SCP) (SNR: 1.08), confirmatory cut point (CCP) (% inhibition: 12.65), and titration cut point (TCP) (sample-to-noise ratio [SNR]: 1.17). The assay sensitivity, low positive control (LPC), and high positive control (HPC) titer acceptable range were also set up as 33.0 ng/mL, 41.0 ng/mL, and 320-1280, respectively. After full validation, both the intra-assay and inter-assay precision testing passed with coefficient of variations (CVs) < 20%. The assay enabled excellent drug tolerance up to 768.0 μg/mL at the HPC level and 291.0 μg/mL at the LPC level, while the tolerance of target interference was up to 74.0 ng/mL of soluble LAG3. Moreover, no false-positive results were observed in the presence of 5% hemolyzed serum samples and 150 mg/dL of triglyceride in the serum samples, no hook effect was observed, and the stability performed normally under room temperature for 24 h, 2-8 °C for 7 d, and six freeze/thaw cycles. In summary, this ADA assay is feasible and could be used for evaluating the immunogenicity of HLX26 in clinical trials.