Abstract:Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with lipopolysaccharide (LPS) on gestational day 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells 24 h later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Furthermore, hAECs treatment decreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments confirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells. Additionally, hAECs treatment had positive effects on fetal weight and neurological development in the PE group, with no negative effects on the physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory and enhancing placental spiral artery angiogenesis.