The stabilization of protein therapeutics against aggregation is crucial for maintaining their efficacy and safety. This study investigated the synergistic effects of cyclodextrins (CDs) and electrolytes at high concentrations on the stabilization of immunoglobulin G (IgG), insulin, and adeno-associated virus (AAV) vectors. The effects of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) combined with various electrolytes were evaluated using human plasma-derived IgG as a model protein. The HP-β-CD and L(+)-arginine hydrochloride combination synergistically increased the onset temperature of protein aggregation and inhibited the formation of soluble and insoluble aggregates during long-term storage. Notably, this synergistic effect was not observed when sucrose was used instead of HP-β-CD. Similar synergistic effects were observed with insulin and AAV vectors. The findings suggest that the stabilization mechanism could potentially involve enhanced interactions between HP-β-CD and IgG, preventing protein-protein interactions. However, the combination did not synergistically improve the solubility of free aromatic amino acids, including tyrosine and tryptophan. This study highlights the potential of using the combination of CDs and electrolytes as a promising formulation strategy for stabilizing complex protein therapeutics. Further studies are needed to elucidate the underlying mechanisms and generalize the approach to other proteins with varying physicochemical properties.