The objective of these studies was to determine the effect of sustained delivery of growth factors (GFs) on hematopoietic progenitor cells (HPCs) in mice. In these studies, granulocyte colony-stimulating factor (G-CSF) was administered using the poloxamer-based matrix, ProGelz (PG) and G-CSF, and pharmacokinetics (PKs) and HPC mobilization was assessed. A single injection of G-CSF formulated in PG (17% poloxamer-407 and 5% hydroxypropyl methylcellulose [HPMC]) administered to BALB/c mice mobilized HPC significantly more rapidly to the spleen, but not the blood, than multiple injections of saline-formulated G-CSF. Two days after a single injection of PG G-CSF, the frequency of colony-forming unit-culture (CFU-c) in the spleen was increased 289-fold compared with an 8-fold increase after 2 days of twice-daily injections of saline-formulated G-CSF. Indeed, 4 days of twice-daily G-CSF injections were required to achieve the same level of HPC mobilization. In contrast, a similar mobilization of HPC to the blood was observed between PG and saline-formulated G-CSF. The mechanism for the accelerated and increased mobilization to the spleen by the PG-formulation of G-CSF is due, in part, to its increased bioavailability (>1.5-fold), T(max) (6-fold), and prolonged elimination (Tbeta) half-life (>3-fold) as compared with a saline formulation. In addition, we observed a more rapid trafficking of the PG G-CSF to the marrow, which could also facilitate mobilization.