Cardiovascular disease (CVD) is a common cardiac disorder that leads to heart attacks, strokes, and heart failure. It is primarily characterized by conditions that impact the heart and blood arteries, including peripheral artery disease, arrhythmias, atherosclerosis, myocardial ischemia, congenital heart abnormalities, heart failure, rheumatic heart disease, hypertension, and cardiomyopathies. These conditions are mainly effect the heart and blood vessels, causing blockages or weakened pumping, due to severe hereditary and environmental factors. The frequency of CVD is rising significantly as life expectancy increases. Despite this, no effective treatment or management for its symptoms has been found. One of the most difficult obstacles to overcome, is finding a suitable animal model for drug screening and drug development. Although rodents, mice, swine, and mammals serve as the basis for most animal models of cardiovascular disease, no model accurately captures the epidemiology of the condition. Zebrafish (Danio rerio) have drawn the interest of the international scientific community due to certain shortcomings of the previously discussed animal models because they are smaller, less costly, and have an incredibly high rate of reproduction. This review article emphasizes the significance of using zebrafish as an animal model to investigate the possible facets of cardiovascular disease. Moreover, the ultimate purpose of this review article is to establish the advantages of employing zebrafish over other animal models and to investigate the boundaries of using zebrafish to study human disease. Furthermore, the mechanisms of cardiovascular diseases induction in zebrafish were covered to improve understanding for readers. Finally, the analysis of cardiotoxicity using Zebra fish model, is also explained. In order to stop the health index from deteriorating, the current study also covers some innovative, effective, and relatively safer treatments for treatment and management of cardiotoxicity.