The mucus serves as a protective barrier in the gastrointestinal tract against microbial attacks. While its role extends beyond merely being a physical barrier, the extent of its active bactericidal properties remains unclear, and the mechanisms regulating these properties are not yet understood. We propose that inflammation induces epithelial cells to secrete antimicrobial peptides, transforming mucus into an active bactericidal agent. To investigate the properties of mucus, we previously developed mucosoid culture models that mimic the healthy human stomach epithelium. Similar to organoids, mucosoids are stem cell-driven cultures; however, the cells are cultivated on transwells at air-liquid interface. The epithelial cells of mucosoids form a polarized monolayer, allowing differentiation into all stomach lineages, including mucus-secreting cells. This setup facilitates the secretion and accumulation of mucus on the apical side of the mucosoids, enabling analysis of its bactericidal effects and protein composition, including antimicrobial peptides. Our findings show that TNFα, IL1β, and IFNγ induce the secretion of antimicrobials such as lactotransferrin, lipocalin2, complement component 3, and CXCL9 into the mucus. This antimicrobial-enriched mucus can partially eliminate Helicobacter pylori, a key stomach pathogen. The bactericidal activity depends on the concentration of each antimicrobial and their gene expression is higher in patients with inflammation and H.pylori-associated chronic gastritis. However, we also find that H. pylori infection can reduce the expression of antimicrobial encoding genes promoted by inflammation. These findings suggest that controlling antimicrobial secretion in the mucus is a critical component of epithelial immunity. However, pathogens like H. pylori can overcome these defenses and survive in the mucosa.