A recombinant adenovirus encoding human endostatin gene, E10A, has finished phase II trials for head and neck cancer. However, the rigid storage temperature (-80°C) and the toxicity of glycerol in the E10A liquid preparation limited its clinical application. In this study, lyophilization was applied to develop a stable E10A lyophilized powder without glycerol that is able to maintain biological activity at 4°C and suitable for intravenous administration. The E10A lyophilized formulations composed of nontoxic and already clinically used excipients were characterized in terms of the pH change during freezing, the eutectic melting temperature (T(eu)) and the collapse temperature (T(c)). Freeze thawing tests were carried out to examine the protective effect of various excipients during freezing. Mannitol and its combinations with sucrose or inulin showed effective protection of E10A. The E10A lyophilized powders were analyzed by particle size measurement, residual humidity quantification, infectivity assay and gene expression level. An optimized formulation (formulation I1) yielded a good recovery of 76% of the starting infectivity after lyophilization and 89% of the original infectivity after storage at 4°C for 180 days. Also the gene expression capability of E10A in formulation I1 was maintained after lyophilization. In addition, it was found that the matrix of amorphous excipients, mannitol combinations with sucrose or inulin, was indispensible in protecting E10A against the stress of freezing and dehydration. Hereby, the E10A lyophilized powder with eliminated glycerol toxicity and improved stability could enhance the applicability of E10A for cancer gene therapy through intravenous administration.