This study aimed to reveal the role of fingolimod (FTY720) in mice with type 2 diabetes-associated cognitive decline and explore its potential neuroprotective mechanism. Mice were divided into five groups: normal control, normal control + FTY720 (1.0 mg/kg/day), type 2 diabetes mellitus, type 2 diabetes mellitus + low-dose FTY720 (0.5 mg/kg/day), and type 2 diabetes mellitus + high-dose FTY720 (1.0 mg/kg/day). Different doses of FTY720 were administered daily for 8 weeks after the induction of type 2 diabetes using a four-week high-fat diet feeding combined with continuous low-dose intraperitoneal injections of streptozotocin. After 8 weeks of treatment, the body weights and fasting blood glucose levels of mice from the five groups were compared. Morris water maze and new object recognition tests were used to evaluate cognitive function. Pathological changes in the hippocampal CA1 region were observed using haematoxylin-eosin and Nissl staining, and the ultrastructure of the hippocampal neurones was assessed using transmission electron microscopy. The expression levels of autophagy- and apoptosis-related proteins, such as LC3, Beclin-1, P62, Bax, and Bcl-2, in the mice hippocampus were detected by western blotting. Simultaneously, AMPK/mTOR signaling pathway proteins were detected to understand the potential mechanism. FTY720 had no significant effect on the body weight or fasting blood glucose levels in mice with type 2 diabetes. However, both FTY720 doses improved the cognitive function and hippocampal damage. In addition, the results suggested that FTY720 dramatically decreased P62 and Bax levels and increased LC3 II/LC3 I ratio, Beclin-1, and Bcl-2 expression in the hippocampus of type 2 diabetic mice. FTY720 also affected the expression of the AMPK/mTOR signaling pathway. Thus, FTY720 improved cognitive function and hippocampal pathological changes in type 2 diabetic mice without affecting fasting blood glucose levels. Our results show that FTY720 may exert neuroprotective effects in vivo by enhancing hippocampal autophagy and inhibiting apoptosis via the AMPK/mTOR signaling pathway.