INTRODUCTIONThe objective was to use bioinformatics to analyze the potential key genes involved in the mechanism of sulforaphane's protective effects in sepsis-associated acute kidney injury (SA-AKI) and to identify potential intervention targets.METHODSGene Expression Omnibus (GEO) gene chip datasets containing gene expression profiles from kidney tissues of SA-AKI patients and normal controls were selected. Upregulated differentially expressed genes (DEGs) were identified using GEO2R. Protein-protein interaction (PPI), GO, and KEGG enrichment analyses were performed. Allyl isothiocyanate's target genes were analyzed in the ChEMBL database, and intersections with the above DEGs were presented in Venn diagrams. Rat tissues were examined for FKBP1A expression using qRT-PCR.RESULTSA total of 17 DEGs related to SA-AKI were obtained (|log fold change| > 0 and P < .05). KEGG pathway analysis indicated that the primary pathways linked to the elevated DEGs were glycogen breakdown, leukocyte trans-endothelial migration, and T-cell receptor, TNF, and NF-κB signaling. The module and PPI network analysis of common DEGs revealed one cluster and four candidate genes, including OASL, TRRAP, FKBP1A, and BANF. ChEMBL database analysis identified 339 target genes for allyl isothiocyanate, and the intersection with upregulated DEGs related to SA-AKI injury yielded two co-expressed genes, FKBP1A and TRRAP. According to the findings of the qRT-PCR assay, the kidney tissues of the model cohort showed significantly higher expression levels of FKBP1A mRNA than the control cohort (P = .0142).CONCLUSIONAllyl isothiocyanate may alleviate SA-AKI injury by targeting FKBP1/NF-κB.