BackgroundNext-generation cancer immunotherapies aim to improve patient outcomes by combining inhibitory signal blockade with targeted T-cell costimulation in tumor and lymphoid tissues. Acasunlimab (DuoBody-PD-L1×4-1BB) is an investigational, bispecific antibody designed to elicit an antitumor immune response via conditional 4-1BB activation strictly dependent on simultaneous programmed death-ligand 1 (PD-L1) binding. Since 4-1BB is coexpressed with programmed cell death protein-1 (PD-1) on CD8+T cells, PD-1 blockade and simultaneous costimulation through 4-1BB may synergistically enhance T-cell effector functions. We hypothesized that combining acasunlimab with PD-1 blockade to fully disrupt PD-1 interactions with both PD-L1 and PD-L2 would amplify the depth and duration of antitumor immunity.MethodsThe effect of acasunlimab and pembrolizumab combination was analyzed in vitro using functional immune cell assays, including mixed-lymphocyte reactions and antigen-specific T-cell proliferation and cytotoxicity assays. The antitumor activity of the combination was tested in vivo in (1) MC38, MB49, Pan02, and B16F10 syngeneic tumor models using acasunlimab and anti-PD-1 mouse-surrogate antibodies; and (2) triple knock-in mice expressing the human targets using an acasunlimab chimeric antibody (chi-acasunlimab) and pembrolizumab. The mechanism of action of the combination was investigated in the MC38 syngeneic model through immunohistochemistry, flow cytometry, and bulk RNA sequencing.ResultsThe combination reinvigorated dysfunctional T cells in vitro, while also potentiating T-cell expansion, interleukin (IL)-4 and interferon gamma secretion and cytotoxic activity. In vivo, the combination of chi-acasunlimab and pembrolizumab or mouse-surrogate antibodies potentiated antitumor activity and survival in the humanized knock-in and multiple syngeneic mouse models, leading to durable complete tumor regressions in the MC38 model consistent with therapeutic synergy. Mechanistically, the combination enhanced clonal expansion of tumor-specific CD8+T cells in tumor-draining lymph nodes and increased the density of proliferating and cytotoxic CD8+T cells in the tumor microenvironment. It also potentiated the IL-2 signaling pathway, increasing the proportion of granzyme B (GZMB+) stem-like CD8+T cells thought to have superior effector function.ConclusionThese preclinical results demonstrate that conditional 4-1BB stimulation combined with complete PD-1 blockade enhances antitumor immunity through complementary mechanisms. The acasunlimab and pembrolizumab combination is being evaluated in Phase 2 (NCT05117242) and pivotal Phase 3 (NCT06635824) trials in patients with metastatic non-small cell lung cancer after checkpoint inhibitor therapy failure.