血小板源性生长因子受体α(platelet-derived growth factor receptor alpha,PDGFRA)是一种受体酪氨酸激酶,在胚胎发育、细胞增殖、迁移和分化过程中发挥关键作用。其异常激活与多种恶性肿瘤、纤维化及免疫疾病密切相关。本文系统综述了PDGFRA的结构特征、信号机制、在多种疾病中的作用及靶向药物的研究进展,为进一步的基础研究和精准治疗提供参考。
1. PDGFR的研究背景
2. PDGFRA的结构与功能基础
3. PDGFRA的信号通路
4. PDGFRA与疾病
5. PDGFRA靶向药物研究进展
6. PDGFRA研究工具
1. PDGFR的研究背景
血小板源性生长因子受体(PDGFR)属于受体酪氨酸激酶(RTK)家族,包括PDGFRA和PDGFRB两个亚型 [1,2]。其中,PDGFRA主要介导PDGF-AA、PDGF-AB及PDGF-CC等配体信号 [3]。在胚胎发育过程中,PDGFRA广泛表达于间充质细胞、成纤维细胞及平滑肌祖细胞中,对细胞迁移、组织重塑及血管生成具有重要作用 [4]。
在病理状态下,PDGFRA信号异常被认为是多种疾病的关键致病机制,包括肿瘤、纤维化、动脉粥样硬化及神经系统疾病 [5,6]。特别是在胃肠道间质瘤(GIST)中,PDGFRA基因突变可导致受体构象改变和持续激活,是继KIT突变后的另一主要驱动因素 [7]。
2. PDGFRA的结构与功能基础
2.1 PDGFRA的结构特征
PDGFRA基因位于4q12染色体,编码约1089个氨基酸的跨膜糖蛋白,包含五个免疫球蛋白样胞外结构域、单一跨膜结构域以及胞内酪氨酸激酶结构域 [11]。其中,第3、第4结构域为配体结合区,第5结构域参与受体二聚化 [12]。受体活化后,其胞内酪氨酸残基被自磷酸化,为下游信号通路提供结合位点 [13]。
PDGFRA与PDGFRB结构高度同源,但在配体特异性和信号转导上存在差异。PDGFRA主要响应PDGF-AA、PDGF-AB、PDGF-CC,而PDGFRB则对PDGF-BB及PDGF-DD更为敏感 [14]。
此外,PDGFRA还与其他受体如FGFR、EGFR存在交叉磷酸化,形成复杂的信号调控网络 [15]。
2.2 PDGFRA的配体与激活机制
PDGF家族由四种多肽链(A、B、C、D)组成,通过二聚化形成五种异/同源性配体:PDGF-AA、PDGF-BB、PDGF-AB、PDGF-CC、PDGF-DD [16]。这些配体与PDGFR亚型结合后诱导受体二聚化及自磷酸化,激活下游信号级联反应。
PDGF-AA主要结合PDGFRA同源二聚体(αα),而PDGF-BB能结合αα、ββ及αβ复合体 [17]。PDGF-CC在生理状态下需经蛋白酶裂解活化,其与PDGFRA结合后可促进细胞迁移与血管生成 [18]。
受体激活后,PDGFRA胞内多个酪氨酸残基(如Y572、Y742、Y988、Y1018)被磷酸化,分别与PI3K、PLCγ、Src及Shp2等分子结合,触发多条信号通路 [19,20]。
2.3 PDGFRA的生理功能
PDGFRA在组织发育与维持中发挥重要作用。胚胎期其在神经嵴、心脏、肺及肾脏发育中均不可或缺 [21]。缺失PDGFRA的小鼠表现出严重的发育缺陷,包括神经管畸形和血管生成障碍 [22]。在成人组织中,PDGFRA调控成纤维细胞、平滑肌细胞及肝星状细胞等的增殖与迁移 [23]。此外,其参与创伤修复及细胞外基质沉积 [24]。过度激活的PDGFRA信号常导致细胞过度增生与纤维化,是多种慢性疾病的重要病理基础 [25]。
3. PDGFRA的信号通路
PDGFRA激活后,可通过多条经典信号通路调控细胞增殖、分化、迁移与生存。主要包括PI3K/Akt、Ras/MAPK、JAK/STAT及PLCγ等通路。
3.1 PI3K/Akt通路
PI3K/Akt通路是PDGFRA介导的主要生存信号之一 [26]。受体激活后,PI3K结合磷酸化的酪氨酸残基(Y742)并被活化,随后催化PIP2转化为PIP3,招募Akt至质膜并被PDK1磷酸化 [27]。激活的Akt促进mTOR、GSK3β及BAD等下游分子磷酸化,从而增强细胞存活和代谢活性 [28]。在肿瘤细胞中,PI3K/Akt信号上调可抑制细胞凋亡并增强抗药性 [29]。此外,PDGFRA-PI3K/Akt信号还参与纤维母细胞向肌成纤维细胞分化,是纤维化形成的关键环节 [30]。
3.2 Ras/MAPK通路
Ras/MAPK通路主要介导细胞增殖与迁移信号。PDGFRA磷酸化的Y988和Y1018可招募Grb2-SOS复合物,激活Ras-GTP,并依次启动Raf-MEK-ERK级联反应 [31]。
ERK进入细胞核后促进转录因子AP-1、Elk-1及c-Fos的表达,调控细胞周期蛋白(Cyclin D1)转录,推动细胞从G1期进入S期 [32]。研究显示,PDGFRA的持续激活可导致MAPK通路过度活跃,引发细胞无限增殖,特别是在肿瘤和纤维化组织中 [33]。
3.3 JAK/STAT通路
JAK/STAT信号是PDGFRA调控免疫反应与细胞分化的重要途径。PDGFRA活化后可促进JAK1/2磷酸化,从而激活STAT1、STAT3及STAT5 [34]。激活的STAT蛋白进入细胞核,促进抗凋亡基因(如Bcl-2、Mcl-1)转录 [35]。在胶质瘤和白血病中,PDGFRA-JAK/STAT信号上调与肿瘤细胞存活密切相关 [36]。
同时,该通路还调控巨噬细胞极化及细胞因子分泌,在慢性炎症与免疫性疾病中具有重要作用 [37]。
3.4 PLCγ与Ca²⁺信号通路
PDGFRA还可激活磷脂酶Cγ(PLCγ)通路。受体的Y1021位点磷酸化后与PLCγ结合,使其催化PIP2分解为IP3和DAG [38]。IP3诱导内质网释放Ca²⁺,而DAG激活PKC,从而调控细胞迁移和收缩功能 [39]。这一通路在血管平滑肌细胞增殖与迁移中尤为重要,异常激活与动脉粥样硬化、血管重构密切相关 [40]。此外,Ca²⁺信号还能反馈调节PDGFRA磷酸化水平,形成动态平衡机制 [41]。
3.5 信号通路的交叉调控
PDGFRA介导的信号网络高度复杂,不同通路间存在交叉调节。例如PI3K/Akt可通过抑制Raf激活调控MAPK信号强度 [42];ERK则能反馈调节PDGFRA的磷酸化,限制其过度活化 [43]。
此外,PDGFRA还可与TGF-β、EGFR及VEGFR等通路相互作用,形成多层级信号网络 [44]。在肿瘤微环境中,这些交叉调控加剧细胞生长失控与耐药性 [45]。
因此,理解PDGFRA相关通路间的动态互作对精准治疗具有重要意义。
4. PDGFRA与疾病
PDGFRA的异常激活与多种疾病密切相关,包括恶性肿瘤、纤维化疾病、心血管及神经系统疾病等。其作用机制主要涉及细胞信号持续激活、免疫微环境改变和细胞外基质重塑。
4.1 PDGFRA与肿瘤
4.1.1 胃肠道间质瘤(GIST)
GIST是PDGFRA研究最深入的肿瘤类型之一。约10–15%的GIST携带PDGFRA突变,其中最常见的是外显子18的D842V突变,导致受体持续激活并对伊马替尼耐药 [46]。阿伐普替尼(avapritinib)作为新型高选择性抑制剂,可有效靶向D842V突变,显著改善患者无进展生存期 [48]。
4.1.2 胶质瘤与脑肿瘤
PDGFRA在胶质瘤中高频扩增或过表达,特别是儿童高等级胶质瘤(HGG)[50]。PDGFRA信号可通过PI3K/Akt和STAT3通路促进神经胶质前体细胞无限增殖 [51]。
在动物模型中,PDGFRA的持续活化可独立驱动肿瘤形成,而联合p53缺失则显著增强恶性程度 [52]。
4.1.3 肺癌与其他实体瘤
PDGFRA在肺腺癌、结直肠癌、乳腺癌等多种实体瘤中亦有异常表达 [55]。其信号上调与肿瘤间质细胞激活、血管生成及转移相关 [56]。例如,在非小细胞肺癌中,肿瘤相关成纤维细胞(CAF)分泌PDGF-AA可激活PDGFRA促进肿瘤进展 [57]。抑制PDGFRA可降低肿瘤细胞侵袭性并增强免疫治疗反应 [58]。
4.2 纤维化相关疾病
PDGFRA信号在多种器官纤维化中被异常激活。其促进成纤维细胞增殖及细胞外基质沉积,是纤维化形成的关键驱动力。在肝纤维化中,PDGFRA通过Akt/mTOR通路促进肝星状细胞活化与胶原合成 [59]。抑制PDGFRA可显著减轻肝组织纤维化程度 [60]。在肺纤维化模型中,PDGFRA的上调导致成纤维细胞持续活化;Nintedanib等多靶点TKI通过抑制PDGFRA/FGFR/VEGFR信号改善疾病进程 [61]。
此外,在肾小球硬化及心肌纤维化中,PDGFRA信号促进肌成纤维细胞分化,增强ECM沉积,形成不可逆组织重塑 [62]。
4.3 心血管系统疾病
PDGFRA在血管发育及损伤修复中具有双重作用。适度激活可促进血管平滑肌增殖及再生,而持续过度激活则引起血管重构和粥样硬化 [47]。研究显示,PDGFRA信号通过PLCγ/Ca²⁺及ERK通路调节平滑肌细胞迁移 [49];其在动脉损伤后的过度激活会导致新生内膜形成 [53]。抑制PDGFRA可减少血管平滑肌异常增生并改善再狭窄风险 [8]。因此,PDGFRA被认为是血管病干预的重要潜在靶点。
4.4 神经系统疾病
PDGFRA在神经系统发育与修复中同样重要。其在少突胶质前体细胞(OPC)中表达,对髓鞘形成和再生至关重要 [9]。在神经损伤或退行性疾病中,PDGFRA信号调控神经胶质细胞增殖与轴突再生 [10]。然而,过度激活的PDGFRA可能导致异常胶质细胞增生,与神经胶质瘤形成相关 [54]。因此,维持PDGFRA信号平衡对神经稳态至关重要。
5. PDGFRA靶向药物研究进展
目前,针对PDGFRA靶点的药物研发呈现出多元化趋势,涵盖了小分子化药、单克隆抗体、CAR-T细胞疗法等多种类型。如下表所示,除已广泛批准用于治疗胃肠道间质瘤的瑞派替尼、阿伐替尼等多靶点药物外,更有众多候选药物处于不同研发阶段,其适应症已扩展至肺动脉高压、特发性肺纤维化、软组织肉瘤等多种疾病,展现了该靶点广阔的临床开发前景。
(数据截止到2025年11月10日,来源于synapse)
6. PDGFRA研究工具
PDGFRA作为重要的受体酪氨酸激酶,在多种生理与病理过程中发挥核心作用。其异常激活与肿瘤、纤维化、心血管及神经疾病密切相关。华美生物提供PDGFRA重组蛋白、抗体及ELISA试剂盒产品,助力您进行相关机制研究及靶向药物开发。
● PDGFRA重组蛋白
Recombinant Human Platelet-derived growth factor receptor alpha (PDGFRA), partial (Active); CSB-MP017712HU1
● PDGFRA抗体
PDGFRA (tovetumab) Recombinant Monoclonal Antibody; CSB-RA017712MA1HU
● PDGFRA ELISA试剂盒
Mouse Platelet-Derived Growth Factor Soluble Receptor α,PDGFsR-α ELISA kit; CSB-E04699m
参考文献:
[1] Andrew A. Laskin, Nikolai A. Kudryashov, Konstantin G. Skryabin, Eugene V. Korotkov.(2004). Latent periodicity of serine-threonine and tyrosine protein kinases and another protein families.
[2] Rabina Shrestha, Tess McCann, Harini Saravanan, Jaret Lieberth, Prashanna Koirala, Joshua Bloomekatz.(2023). The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)–phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation.
[3] Katherine A. Fantauzzo, Philippe Soriano.(2014). PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways.
[4] Alisa A. Mueller, Cindy T. J. van Velthoven, K. Fukumoto, Tom H. Cheung, T. Rando.(2016). Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis.
[5] Kim van Kuijk, Ian R McCracken, Renée J H A Tillie, Sebastiaan E J Asselberghs, Dlzar A Kheder, Stan Muitjens, Han Jin, Richard S Taylor, Ruud Wichers Schreur, Christoph Kuppe, Ross Dobie, Prakesh Ramachandran, Marion J Gijbels, Lieve Temmerman, Phoebe M Kirkwoord, Joris Luyten, Yanming Li, Heidi Noels, Pieter Goossens, John R Wilson-Kanamori, Leon J Schurgers, Ying H Shen, Barend M E Mees, Erik A L Biessen, Neil C Henderson, Rafael Kramann, Andrew H Baker, Judith C Sluimer.(2023). Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol.
[6] Elisa Manieri, Guodong Tie, Ermanno Malagola, Davide Seruggia, Shariq Madha, Adrianna Maglieri, Kun Huang, Yuko Fujiwara, Kevin Zhang, Stuart H Orkin, Timothy C Wang, Ruiyang He, Neil McCarthy, Ramesh A Shivdasani.(2023). Role of PDGFRA.
[7] Emilie Guérit, Florence Arts, Guillaume Dachy, Boutaina Boulouadnine, Jean-Baptiste Demoulin.(2021). PDGF receptor mutations in human diseases.
[8] Kentaro Mineji, Jun Watanabe, Eita Uchida, Savneet Kaur, Peng Zhang, Rintaro Hashizume.(2024). DDEL-03. INTRANASAL DELIVERY OF PDGFRA-TARGETED NANOTHERAPEUTICS FOR THE TREATMENT OF PEDIATRIC HIGH-GRADE GLIOMA.
[9] Quirinus J M Voorham, Beatriz Carvalho, Angela J Spiertz, Bart Claes, Sandra Mongera, Nicole C T van Grieken, Heike Grabsch, Martin Kliment, Bjorn Rembacken, Mark A van de Wiel, Philip Quirke, Chris J J Mulder, Diether Lambrechts, Manon van Engeland, Gerrit A Meijer.(2012). Comprehensive mutation analysis in colorectal flat adenomas.
[10] Yiting Deng, Yuanhang He, Juan Xu, Hao He, Manling Zhang, Guang Li.(2025). Cardiac fibroblasts regulate myocardium and coronary vasculature development in the murine heart via the collagen signaling pathway.
[11] T J MacDonald, K M Brown, B LaFleur, K Peterson, C Lawlor, Y Chen, R J Packer, P Cogen, D A Stephan.(2001). Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease.
[12] Jonathan Paolino, Boris Dimitrov, Beth Apsel Winger, Angelica Sandoval-Perez, Amith Vikram Rangarajan, Nicole Ocasio-Martinez, Harrison K Tsai, Yuting Li, Amanda L Robichaud, Delan Khalid, Charlie Hatton, Riaz Gillani, Petri Polonen, Anthony Dilig, Giacomo Gotti, Julia Kavanagh, Asmani A Adhav, Sean Gow, Jonathan Tsai, Yen Der Li, Benjamin L Ebert, Eliezer M Van Allen, Jacob Bledsoe, Annette S Kim, Sarah K Tasian, Stacy L Cooper, Todd M Cooper, Nobuko Hijiya, Maria Luisa Sulis, Neerav N Shukla, Jeffrey A Magee, Charles G Mullighan, Michael J Burke, Marlise R Luskin, Brenton G Mar, Matthew P Jacobson, Marian H Harris, Kimberly Stegmaier, Andrew E Place, Yana Pikman.(2023). Integration of Genomic Sequencing Drives Therapeutic Targeting of PDGFRA in T-Cell Acute Lymphoblastic Leukemia/Lymphoblastic Lymphoma.
[13] Michele Biscuola, Koen Van de Vijver, María Ángeles Castilla, Laura Romero-Pérez, María Ángeles López-García, Juan Díaz-Martín, Xavier Matias-Guiu, Esther Oliva, José Palacios Calvo.(2013). Oncogene alterations in endometrial carcinosarcomas.
[14] M E Brunkow, D L Nagle, A Bernstein, M Bucan.(1995). A 1.8-Mb YAC contig spanning three members of the receptor tyrosine kinase gene family (Pdgfra, Kit, and Flk1) on mouse chromosome 5.
[15] Carman K M Ip, Patrick K S Ng, Kang Jin Jeong, S H Shao, Zhenlin Ju, P G Leonard, Xu Hua, Christopher P Vellano, Richard Woessner, Nidhi Sahni, Kenneth L Scott, Gordon B Mills.(2018). Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies.
[16] Qu-Jing Gai, Zhen Fu, Jiang He, Min Mao, Xiao-Xue Yao, Yan Qin, Xi Lan, Lin Zhang, Jing-Ya Miao, Yan-Xia Wang, Jiang Zhu, Fei-Cheng Yang, Hui-Min Lu, Ze-Xuan Yan, Fang-Lin Chen, Yu Shi, Yi-Fang Ping, You-Hong Cui, Xia Zhang, Xindong Liu, Xiao-Hong Yao, Sheng-Qing Lv, Xiu-Wu Bian, Yan Wang.(2022). EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma.
[17] Thomas E Forman, Marcin P Sajek, Eric D Larson, Neelanjan Mukherjee, Katherine A Fantauzzo.(2024). PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking.
[18] M. Riccetti, J. Green, Thomas J Taylor, A. Perl.(2023). Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA+ Myofibroblast.
[19] Xuehui Yang, Shivangi Pande, R. Koza, R. Friesel.(2021). Sprouty1 regulates gonadal white adipose tissue growth through a PDGFRα/β-Akt pathway.
[20] Chun-meng Wang, Ying-qiang Shi, Hong Fu, Guang-fa Zhao, Ye Zhou, Chun-yan Du, Yan-wei Ye.(2010). [Oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor].
[21] M J Ríos-Moreno, S Jaramillo, M Díaz-Delgado, M Sánchez-León, I Trigo-Sánchez, J Polo Padillo, J Amérigo, R González-Cámpora.(2011). Differential activation of MAPK and PI3K/AKT/mTOR pathways and IGF1R expression in gastrointestinal stromal tumors.
[22] Phillip Zook, H. Pathak, M. Belinsky, Lawrence Gersz, K. Devarajan, Yan Zhou, A. Godwin, M. von Mehren, L. Rink.(2016). Combination of Imatinib Mesylate and AKT Inhibitor Provides Synergistic Effects in Preclinical Study of Gastrointestinal Stromal Tumor.
[23] Martha L Slattery, Lila E Mullany, Lori C Sakoda, Roger K Wolff, John R Stevens, Wade S Samowitz, Jennifer S Herrick.(2018). The PI3K/AKT signaling pathway: Associations of miRNAs with dysregulated gene expression in colorectal cancer.
[24] Zhanghua Wu, Wei Zhao, Zhen Yang, Yue Wang, Yuichi Dai, Liang-an Chen.(2021). Novel Resistance Mechanisms to Osimertinib Analysed by Whole-Exome Sequencing in Non-Small Cell Lung Cancer.
[25] Kiran Kumar Chitluri, Emerson Isaac Arnold.(2025). Integrative genomic analysis identifies DPP4 inhibition as a modulator of FGF17 and PDGFRA downregulation and PI3K/Akt pathway suppression leading to apoptosis.
[26] Olga Martinho, R. Silva-Oliveira, Vera Miranda-Gonçalves, C. Clara, J. R. Almeida, A. Carvalho, J. Barata, R. Reis.(2013). In Vitro and In Vivo Analysis of RTK Inhibitor Efficacy and Identification of Its Novel Targets in Glioblastomas.
[27] Richard J Gilbertson, Jaqueline A Langdon, Andrew Hollander, Roberto Hernan, Twala L Hogg, Amar Gajjar, Christine Fuller, Steven C Clifford.(2006). Mutational analysis of PDGFR-RAS/MAPK pathway activation in childhood medulloblastoma.
[28] Olga Martinho, António Gouveia, Marta Viana-Pereira, Paula Silva, Amadeu Pimenta, Rui Manuel Reis, José Manuel Lopes.(2009). Low frequency of MAP kinase pathway alterations in KIT and PDGFRA wild-type GISTs.
[29] H. Cho, Junfei Zhao, S. Jung, Erik Ladewig, D. Kong, Y. Suh, Yeri Lee, Donggeon Kim, S. Ahn, M. Bordyuh, H. Kang, J. Sa, Y. Seo, S. Kim, D. Lim, Yun-Sik Dho, Jung-Il Lee, H. Seol, J. Choi, W. Park, Chul-Kee Park, R. Rabadán, D. Nam.(2018). Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma.
[30] Herbert M Sauro, Brian Ingalls.(2007). MAPK Cascades as Feedback Amplifiers.
[31] Paul Smolen, Douglas A. Baxter, John H. Byrne.(2008). Bistable MAP Kinase Activity: A Plausible Mechanism Contributing to Maintenance of Late Long-Term Potentiation.
[32] Ruth Nussinov, Chung-Jung Tsai, Carla Mattos.(2013). Pathway drug cocktail: targeting Ras signaling based on structural pathways.
[33] Joanne E Simpson, Noor Gammoh.(2024). Autophagy cooperates with PDGFRA to support oncogenic growth signaling.
[34] Lizhu Liu, Lihong Wu, D. Shan, Bo Han.(2022). Characterization and clinical relevance of PDGFRA pathway copy number variation gains across human cancers.
[35] Tamas Korcsmaros, Illes J. Farkas, Maté S. Szalay, Petra Rovo, David Fazekas, Zoltan Spiro, Csaba Bode, Katalin Lenti, Tibor Vellai, Peter Csermely.(2010). Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery.
[36] Cameron W Brennan, Roel G W Verhaak, Aaron McKenna, Benito Campos, Houtan Noushmehr, Sofie R Salama, Siyuan Zheng, Debyani Chakravarty, J Zachary Sanborn, Samuel H Berman, Rameen Beroukhim, Brady Bernard, Chang-Jiun Wu, Giannicola Genovese, Ilya Shmulevich, Jill Barnholtz-Sloan, Lihua Zou, Rahulsimham Vegesna, Sachet A Shukla, Giovanni Ciriello, W K Yung, Wei Zhang, Carrie Sougnez, Tom Mikkelsen, Kenneth Aldape, Darell D Bigner, Erwin G Van Meir, Michael Prados, Andrew Sloan, Keith L Black, Jennifer Eschbacher, Gaetano Finocchiaro, William Friedman, David W Andrews, Abhijit Guha, Mary Iacocca, Brian P O’Neill, Greg Foltz, Jerome Myers, Daniel J Weisenberger, Robert Penny, Raju Kucherlapati, Charles M Perou, D Neil Hayes, Richard Gibbs, Marco Marra, Gordon B Mills, Eric Lander, Paul Spellman, Richard Wilson, Chris Sander, John Weinstein, Matthew Meyerson, Stacey Gabriel, Peter W Laird, David Haussler, Gad Getz, Lynda Chin.(2013). The somatic genomic landscape of glioblastoma.
[37] H. Joensuu.(2023). KIT and PDGFRA Variants and the Survival of Patients with Gastrointestinal Stromal Tumor Treated with Adjuvant Imatinib.
[38] J. Dai, Y. Kong, L. Si, Z. Chi, C. Cui, X. Sheng, L. Mao, Si-ming Li, B. Lian, Ruifeng Yang, Shujing Liu, Xiaowei Xu, Jun Guo.(2013). Large-scale Analysis of PDGFRA Mutations in Melanomas and Evaluation of Their Sensitivity to Tyrosine Kinase Inhibitors Imatinib and Crenolanib.
[39] Tatsuya Kaji, Osamu Yamasaki, Minoru Takata, Masaki Otsuka, Toshihisa Hamada, Shin Morizane, Kenji Asagoe, Hiroyuki Yanai, Yoji Hirai, Hiroshi Umemura, Keiji Iwatsuki.(2017). Comparative study on driver mutations in primary and metastatic melanomas at a single Japanese institute: A clue for intra- and inter-tumor heterogeneity.
[40] Ryan A Denu, Cissimol P. Joseph, Elizabeth Urquiola, Precious S. Byrd, Richard K. Yang, R. Ratan, M. Zarzour, A. Conley, D. Araujo, V. Ravi, E. N. Nassif Haddad, M. Nakazawa, Shreyaskumar R Patel, Wei-Lien Wang, Alexander J. Lazar, N. Somaiah.(2024). Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors.
[41] Changsong Qi, Fang Pan, Jian Li, Yanyan Li, Jing Gao, Lin Shen.(2018). [Analysis of biological characteristics and prognosis on gastrointestinal stromal tumor with PDGFRA gene mutation].
[42] Michael C Heinrich, Robert G Maki, Christopher L Corless, Cristina R Antonescu, Amy Harlow, Diana Griffith, Ajia Town, Arin McKinley, Wen-Bin Ou, Jonathan A Fletcher, Christopher D M Fletcher, Xin Huang, Darrel P Cohen, Charles M Baum, George D Demetri.(2008). Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor.
[43] C Serrano, S Bauer, D Gómez-Peregrina, Y-K Kang, R L Jones, P Rutkowski, O Mir, M C Heinrich, W D Tap, K Newberry, A Grassian, H Shi, S Bialick, P Schöffski, M A Pantaleo, M von Mehren, J C Trent, S George.(2023). Circulating tumor DNA analysis of the phase III VOYAGER trial: KIT mutational landscape and outcomes in patients with advanced gastrointestinal stromal tumor treated with avapritinib or regorafenib.
[44] D. Shepherd, T. Miller, D. Forst, P. Jones, V. Nardi, M. Martinez-Lage, A. Stemmer-Rachamimov, R. González, A. Iafrate, Lauren L. Ritterhouse.(2021). Mosaicism for receptor tyrosine kinase activation in a glioblastoma involving both PDGFRA amplification and NTRK2 fusion.
[45] Kohei Kanamori, Y. Yamagata, Y. Honma, Keiichi Date, T. Wada, Tsutomu Hayashi, Sho Otsuki, S. Sekine, T. Yoshikawa, H. Katai, T. Nishida.(2020). Extra-gastrointestinal stromal tumor arising in the lesser omentum with a platelet-derived growth factor receptor alpha (PDGFRA) mutation: a case report and literature review.
[46] Wen Huang, Wei Yuan, Lei Ren, Huaiyu Liang, Xiangyang Du, Xiangfei Sun, Yong Fang, Xiaodong Gao, Min Fu, Yihong Sun, Kuntang Shen, Yingyong Hou.(2022). Clinicopathological and therapeutic analysis of PDGFRA mutated gastrointestinal stromal tumor.
[47] Xuemeng Liu, Yaotian Hu, Z. Xue, Xun Zhang, Xiao-fei Liu, Guowei Liu, Muzi Wen, Anjing Chen, Bin Huang, Xia Li, Ning Yang, Jian Wang.(2023). Valtrate, an iridoid compound in Valeriana, elicits anti-glioblastoma activity through inhibition of the PDGFRA/MEK/ERK signaling pathway.
[48] Michael C Heinrich, Robin L Jones, Margaret von Mehren, Patrick Schöffski, César Serrano, Yoon-Koo Kang, Philippe A Cassier, Olivier Mir, Ferry Eskens, William D Tap, Piotr Rutkowski, Sant P Chawla, Jonathan Trent, Meera Tugnait, Erica K Evans, Tamieka Lauz, Teresa Zhou, Maria Roche, Beni B Wolf, Sebastian Bauer, Suzanne George.(2020). Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial.
[49] S. Abbou, C. Koschmann, C. Kramm, Lindsey M Hoffman, Ashley S. Plant-Fox, M. Abdelbaki, Ashley Bui, M. Casanova, Cornelis M. van Tilburg, Dong-Anh Khuong-Quang, Susan N Chi, Hongliang Shi, I. Bidollari, Janet Hong, P. Swamy, Maria Roche, D. Morgenstern.(2024). TRLS-08. ROVER: A PHASE 1/2 TRIAL IN PROGRESS OF AVAPRITINIB IN PEDIATRIC PATIENTS WITH SOLID TUMORS DEPENDENT ON KIT OR PDGFRA SIGNALING.
[50] R. Olivera-Salazar, Gabriel Salcedo Cabañas, L. Vega-Clemente, David Alonso-Martín, Víctor Manuel Castellano Megías, Peter Volward, D. García-Olmo, M. García-Arranz.(2024). Pilot Study by Liquid Biopsy in Gastrointestinal Stromal Tumors: Analysis of PDGFRA D842V Mutation and Hypermethylation of SEPT9 Presence by Digital Droplet PCR.
[51] Xue Kong, Jun Shi, Dongdong Sun, Lanqing Cheng, Can Wu, Zhiguo Jiang, Yushan Zheng, Wei Wang, Haibo Wu.(2025). A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor.
[52] Pierre Noel.(2012). Eosinophilic myeloid disorders.
[53] C. Koschmann, L. Hoffman, C. Kramm, Ashley S. Plant-Fox, M. Abdelbaki, Ashley Bui, M. Casanova, D. Morgenstern, P. Swamy, Hongliang Shi, Janet Hong, Mikael L Rinne, S. Chi.(2023). TRLS-10. ROVER: A PHASE 1/2 STUDY OF AVAPRITINIB IN PEDIATRIC PATIENTS WITH SOLID TUMORS DEPENDENT ON KIT OR PDGFRA SIGNALING.
[54] Changgong Li, Matt K. Lee, F. Gao, S. Webster, H. Di, J. Duan, Chang-Yo Yang, Navin Bhopal, N. Peinado, G. Pryhuber, Susan M. Smith, Z. Borok, S. Bellusci, P. Minoo.(2019). Secondary crest myofibroblast PDGFRα controls the elastogenesis pathway via a secondary tier of signaling networks during alveologenesis.
[55] Celalettin Ustun, David L DeRemer, Cem Akin.(2011). Tyrosine kinase inhibitors in the treatment of systemic mastocytosis.
[56] Cameron Brennan, Hiroyuki Momota, Dolores Hambardzumyan, Tatsuya Ozawa, Adesh Tandon, Alicia Pedraza, Eric Holland.(2009). Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations.
[57] C. Cobbs, Sabeena Khan, Lisa Matlaf, Sean D McAllister, Alexander Zider, G. Yount, Kenneth Rahlin, L. Harkins, V. Bezrookove, Eric Singer, L. Soroceanu.(2014). HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation.
[58] Soniya Bastola, Marat S Pavlyukov, Neel Sharma, Yasmin Ghochani, Mayu A Nakano, Sree Deepthi Muthukrishnan, Sang Yul Yu, Min Soo Kim, Alireza Sohrabi, Natalia P Biscola, Daisuke Yamashita, Ksenia S Anufrieva, Tatyana F Kovalenko, Grace Jung, Tomas Ganz, Beatrice O’Brien, Riki Kawaguchi, Yue Qin, Stephanie K Seidlits, Alma L Burlingame, Juan A Oses-Prieto, Leif A Havton, Steven A Goldman, Anita B Hjelmeland, Ichiro Nakano, Harley I Kornblum.(2025). Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma.
[59] Joanne E Simpson, Morwenna T Muir, Martin Lee, Catherine Naughton, Nick Gilbert, Steven M Pollard, Noor Gammoh.(2024). Autophagy supports PDGFRA-dependent brain tumor development by enhancing oncogenic signaling.
[60] Xiaozhou Yu, Xiao Song, D. Tiek, Runxin Wu, Maya Walker, C. Horbinski, Bo Hu, Shi-Yuan Cheng.(2025). Abstract 6946: Targeting PDGFRa-SHP2 signaling enhances radiotherapy in IDH1 mutant glioma.
[61] Junya Yamaguchi, Fumiharu Ohka, Masafumi Seki, Kazuya Motomura, Shoichi Deguchi, Yoshiki Shiba, Yuka Okumura, Yuji Kibe, Hiroki Shimizu, Sachi Maeda, Yuhei Takido, Ryo Yamamoto, Akihiro Nakamura, Kennosuke Karube, Ryuta Saito.(2024). Dual phenotypes in recurrent astrocytoma, IDH-mutant; coexistence of IDH-mutant and IDH-wildtype components: a case report with genetic and epigenetic analysis.
[62] K. Tateishi, Yohei Miyake, Taishi Nakamura, Hiromichi Iwashita, Takahiro Hayashi, A. Oshima, Hirokuni Honma, Hiroaki Hayashi, Kyoka Sugino, Miyui Kato, K. Satomi, Satoshi Fujii, Takashi Komori, Tetsuya Yamamoto, D. Cahill, H. Wakimoto.(2023). Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma.