BACKGROUNDTreatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms.METHODS AND RESULTSA systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD.CONCLUSIONSmiRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.