缺血性脑血管病作为全球致残、致死的主要病因之一,随着人口老龄化加剧和生活方式转变,疾病负担持续加重,成为公共卫生领域的重大挑战。2025年该领域研究聚焦于精准诊断技术革新、治疗策略优化及病理机制深度解析,从急性缺血性卒中溶栓治疗实践与全域研究热点视角,呈现了该领域的最新进展与发展趋势。
一、精准诊断技术:从影像引导到多维度整合
精准诊断是缺血性脑血管病个体化治疗的前提,2025年相关研究以 “技术融合” 为核心特征,实现了从早期识别到预后评估的全流程优化。
在影像诊断方面,多模态影像技术与人工智能(AI)的结合成为关键突破。MRI、CT 灌注成像及 PET 技术的协同应用,能够精准勾勒缺血病灶范围、评估血流动力学及代谢功能,为溶栓治疗筛选提供核心依据。例如 WAKE-UP 研究采用 MRI 引导发病时间未知的卒中溶栓,EXTEND 研究通过灌注成像将溶栓时间窗扩展至发病后 9 小时,均证实了影像技术在突破传统时间窗限制中的核心作用。AI 辅助影像分析进一步提升了诊断效率与准确性,通过深度学习算法实现微小病灶识别、自动化数据处理及三维重建,减少人为误差,为快速决策提供支持。
血液生物标志物与多组学技术的应用丰富了诊断维度。神经元特异性烯醇化酶(NSE)、脑源性神经营养因子(BDNF)等标志物可早期反映神经元损伤,炎症因子与氧化应激相关分子则揭示疾病免疫代谢异常。基因组学、蛋白质组学与代谢组学的整合分析,构建了多维度生物标志物谱,结合影像学数据形成的联合诊断模型,显著提升了疾病分型与风险预测的精准度。
数字健康技术拓展了诊断与监测边界。可穿戴设备实现心率、血压等生命体征的连续监测与远程传输,移动健康应用通过智能提醒与行为指导强化患者管理,远程神经认知评估工具则为康复效果监测提供了便捷手段,推动诊疗模式向 “智能化、精细化” 转型。
二、治疗策略优化:溶栓突破与多手段协同
2025 年缺血性脑血管病治疗以 “扩宽适用范围、提升疗效、降低风险” 为核心,在溶栓治疗优化、神经保护创新及再生医学应用等方面取得显著进展。
(一)溶栓治疗:时间窗拓展与特殊人群适配
传统 4.5小时溶栓时间窗被持续突破,基于影像筛选的个体化溶栓成为主流策略。EXTEND 研究证实,发病 4.5-9小时内符合 “低灌注与梗死核心体积比> 1.2、缺血核心 < 70ml” 错配标准的患者,阿替普酶溶栓可显著改善功能结局(35.4% vs 对照组 29.5%);TRACE-3研究进一步将时间窗延伸至 4.5-24 小时,针对前循环大血管闭塞患者,替奈普酶(TNK)溶栓使 90 天良好功能结局比例提升至 33%(对照组 24.2%),为晚期溶栓提供了新证据。
特殊人群的溶栓适应症不断放宽。研究证实 80 岁以上高龄患者接受阿替普酶溶栓的有效性与年轻患者相似,症状性颅内出血风险与年龄无关;卒中前合并痴呆或残疾、轻型卒中及症状快速缓解、脑内少量微出血(<10 个)或脑白质高信号患者,在充分评估沟通后可获益于溶栓治疗;儿童大血管闭塞卒中患者(发病 4.5 小时内),经专家评估后也可采用再灌注治疗。此外,癫痫发作、颅外颈部动脉夹层、未破裂小动脉瘤(<10mm)等特殊情况,不再作为溶栓绝对禁忌,个体化风险 - 获益评估成为决策核心。
溶栓药物与方案持续优化。TEMPO-2 研究对比了发病 12 小时内轻型卒中患者的 TNK 溶栓与常规治疗,虽主要疗效终点未达显著差异,但为轻型卒中的干预提供了参考;CHABIS-H 研究聚焦中国人群大 / 中型血管闭塞患者,探索 TNK 在 4.5-24 小时时间窗内的应用,以 “完全血管再通 + 无 symptomatic 颅内出血(sICH)” 为核心终点,为亚裔人群的个体化治疗提供依据。
(二)神经保护与再灌注损伤防控
多靶点神经保护药物研发成为热点。针对氧化应激、炎症反应及焦亡机制的药物取得进展,如含钆的层状双氢氧化物纳米片(AFGd-LDH)结合阿托伐他汀,氧自由基清除能力达 90%,显著优于临床药物依达拉奉;铁死亡抑制剂与纳米酶协同作用可减轻神经炎症与细胞死亡。多靶点联合用药策略也得到探索,nerinetide、依达拉奉等与溶栓 / 取栓联合应用,显示出改善功能预后的潜力;GLP-1 类似物通过抗凋亡作用减少梗死面积,为缺血再灌注损伤提供了新的药物方向。
非药物神经保护手段逐步推广。体表感觉皮层电刺激通过激活 BDNF/PI3K/Akt/mTOR 信号通路抑制炎症与凋亡,远程缺血预处理则通过调控机体应激反应减轻脑损伤,为无法耐受药物治疗的患者提供了替代方案。针对再灌注损伤的机制干预取得突破,抑制血清和糖皮质激素调节激酶 1(SGK1)可减轻血脑屏障破坏,区域冷灌注联合血红蛋白基氧载体治疗能改善血流动力学、减少出血转化。
(三)机械取栓与再生医学创新
机械取栓器械不断升级,新型大口径吸引器(如JET 7 导管)结合球囊导管与支架取栓技术,首次通过再通成功率超 90%;复合取栓技术(如 BADDASS 技术)整合多重器械优势,进一步提升了复杂血管闭塞的再通质量。靶向溶栓剂研发聚焦于降低出血风险,局部低剂量溶栓联合机械取栓及纳米载体精准递送技术,减少了全身副作用。
细胞治疗与再生医学成为修复领域核心方向。间充质干细胞(MSCs)与神经干细胞通过分泌营养因子、调节免疫炎症,显著促进神经功能恢复;MSC 来源的外泌体因低免疫原性和强穿脑能力,成为细胞移植的理想替代方案。生物材料与组织工程技术的结合,为干细胞定植提供了支架支持,中医药成分则可提升干细胞增殖分化能力,推动传统医学与再生医学的融合。
三、病理机制解析:炎症与免疫调控的核心作用
2025 年研究进一步揭示了炎症与免疫反应在缺血性脑血管病中的双重作用,为靶向治疗提供了新靶点。
炎症反应的阶段特异性功能得到明确:急性期内,缺血缺氧诱发 PGE2、IL-1β、TNF-α 等促炎介质释放,激活微胶质细胞与外周免疫细胞浸润,破坏血脑屏障并加剧神经损伤;慢性期则转向修复表型,IL-10 等抗炎因子分泌增加,免疫细胞参与神经修复与组织稳态重建。免疫细胞的功能分化机制成为研究重点,微胶质细胞在缺血后可从 M1 型促炎表型转化为 M2 型修复表型,浆细胞样树突状细胞通过诱导调节性 T 细胞(Tregs)扩增发挥免疫抑制作用,PD-1/PD-L1 轴与 NLRP3 炎症小体则调控免疫平衡与炎症激活。
免疫调节治疗策略呈现 “双向调控” 特征:急性期采用小分子抑制剂与抗炎药物抑制过度炎症,慢性期则通过免疫激活剂促进修复表型转化;联合治疗(如抗氧化剂 + 免疫调节剂)协同调控氧化应激与炎症反应,纳米技术与细胞治疗的结合则实现了免疫调节的精准化。免疫相关生物标志物的监测的应用,为治疗效果评估提供了量化依据。
四、总结与展望
2025 年缺血性脑血管病研究呈现 “精准化、个体化、多学科融合” 的核心趋势:诊断领域实现了影像、生物标志物与数字技术的多维整合,治疗领域突破了传统时间窗与人群限制,机制研究聚焦于炎症免疫的精准调控。然而,仍存在部分挑战,如新型药物与细胞治疗的长期安全性需大规模临床试验验证,个体差异对治疗效果的影响机制尚未完全明确,基础研究向临床转化的效率有待提升。
未来研究应进一步强化基础与临床的结合,通过多中心协作积累真实世界数据,优化个体化治疗方案;推动神经科学、免疫学、纳米技术与数字健康的跨学科融合,开发更高效的诊断工具与治疗药物;关注不同地区、性别与年龄群体的疾病特征差异,制定差异化防控策略。通过这些举措,有望实现缺血性脑血管病从早期精准诊断到个性化治疗的全链条突破,降低疾病负担并提升患者生活质量
参考文献
[1] Chen X, Lu L, Xiao C, et al. Global burden of ischemic stroke in adults aged 60 years and older from 1990 to 2021: Population-based study. PLoS One. 2025;20(5):e0322606. Published 2025 None. doi:10.1371/journal.pone.0322606 https://pubmed.ncbi.nlm.nih.gov/40323959/
[2] Hao G, Shi Z, Zhang B, Dong Y, Liang G. Global Burden of Ischemic Stroke in Middle-Aged Workforce Population, 1990-2021: Systematic Analysis of the Global Burden of Disease Study 2021. Neuroepidemiology. :1-18. Published online May 5,2025. doi:10.1159/000546067 https://pubmed.ncbi.nlm.nih.gov/40324365/
[3] He Q, Wang W, Zhang Y, et al. Global, Regional, and National Burden of Stroke, 1990-2021: A Systematic Analysis for Global Burden of Disease 2021. Stroke. 2024;55(12):2815-2824. doi:10.1161/STROKEAHA.124.048033 https://pubmed.ncbi.nlm.nih.gov/39417225/
[4] Zhang X, Lv H, Chen X, Li M, Zhou X, Jia X. Analysis of ischemic stroke burden in Asia from 1990 to 2019: based on the global burden of disease 2019 data. Front Neurol. 14:1309931. Published 2023 None. doi:10.3389/fneur.2023.1309931 https://pubmed.ncbi.nlm.nih.gov/38187147/
[5] Xu J, Hou S, Chen Z, et al. The burden of ischemic stroke in Eastern Europe from 1990 to 2021. BMC Neurol. 2025;25(1):74. Published 2025 Feb 22. doi:10.1186/s12883-025-04081-z https://pubmed.ncbi.nlm.nih.gov/39987025/
[6] Goyal AD, Gajjar AA, Muhammad N, et al. A Three-Decade Analysis of Ischemic Stroke in India: Mortality, Morbidity, and Risk Factors Using the Global Burden of Diseases Study from 1990 to 2019. J Clin Med. 2025;14(21). Published 2025 Nov 3. doi:10.3390/jcm14217807 https://pubmed.ncbi.nlm.nih.gov/41227203/
[7] Ye Y, Zhu YT, Zhang JC, et al. Burden and attributable risk factors of ischemic stroke in China from 1990 to 2019: an analysis from the Global Burden of Disease Study 2019. Front Neurol. 14:1216777. Published 2023 None. doi:10.3389/fneur.2023.1216777 https://pubmed.ncbi.nlm.nih.gov/37564738/
[8] Qian Y, Chopp M, Chen J. Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol. 331:113382. doi:10.1016/j.expneurol.2020.113382 https://pubmed.ncbi.nlm.nih.gov/32561412/
[9] Su Y, Zhang L, Zhou Y, Ding L, Li L, Wang Z. The progress of research on histone methylation in ischemic stroke pathogenesis. J Physiol Biochem. 2022;78(1):1-8. doi:10.1007/s13105-021-00841-w https://pubmed.ncbi.nlm.nih.gov/34472033/
[10] Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol. 2025;62(5):5359-5376. doi:10.1007/s12035-024-04624-4 https://pubmed.ncbi.nlm.nih.gov/39541071/
[11] Li W, Shao C, Zhou H, et al. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev. 81:101730. doi:10.1016/j.arr.2022.101730 https://pubmed.ncbi.nlm.nih.gov/36087702/
[12] Yu X, Huang Y, Li C. Roles and Potential Mechanisms of Endothelial Cell-Derived Extracellular Vesicles in Ischemic Stroke. Transl Stroke Res. 2025;16(5):1836-1849. doi:10.1007/s12975-025-01334-4 https://pubmed.ncbi.nlm.nih.gov/39918683/
[13] Xu Z, Xu Z, Lu J, Zhang J, Shi L. Regulatory T cells as novel cell-based therapy for ischemic stroke. J Cereb Blood Flow Metab. 2025;45(10):1859-1876. doi:10.1177/0271678X251366071 https://pubmed.ncbi.nlm.nih.gov/40801337/
[14] Levinson S, Pulli B, Heit JJ. Neuroinflammation and acute ischemic stroke: impact on translational research and clinical care. Front Surg. 12:1501359. Published 2025 None. doi:10.3389/fsurg.2025.1501359 https://pubmed.ncbi.nlm.nih.gov/40356948/
[15] Liu AL, Du MH, Liu YL, Fei CJ, Xue YQ, Yin R. Research progress of quantitative electroencephalography in post-ischemic stroke mental disorders. Front Neurol. 16:1445962. Published 2025 None. doi:10.3389/fneur.2025.1445962 https://pubmed.ncbi.nlm.nih.gov/40303890/
[16] Cotinat M, Robinet E, Messaoudi N, et al. Added Value of Sodium MR Imaging and Proton MR Spectroscopy to Conventional MR Imaging for a Better Characterization of the Ischemic Stroke: A Narrative Review. Magn Reson Med Sci. 2025;24(4). doi:10.2463/mrms.rev.2025-0002 https://pubmed.ncbi.nlm.nih.gov/40204455/
[17] Foo LS, Harston G, Mehndiratta A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020). Quant Imaging Med Surg. 2021;11(8):3797-3811. doi:10.21037/qims-20-1339 https://pubmed.ncbi.nlm.nih.gov/34341751/
[18] Wang Q, Chen Y, Meng L, Yin J, Wang L, Gong T. A Novel Perspective on Ischemic Stroke: A Review of Exosome and Noncoding RNA Studies. Brain Sci. 2022;12(8). Published 2022 Jul 28. doi:10.3390/brainsci12081000 https://pubmed.ncbi.nlm.nih.gov/36009062/
[19] Li Y, Schappell LE, Polizu C, et al. Evolving Clinical-Translational Investigations of Cerebroprotection in Ischemic Stroke. J Clin Med. 2023;12(21). Published 2023 Oct 24. doi:10.3390/jcm12216715 https://pubmed.ncbi.nlm.nih.gov/37959180/
[20] Li T, Zhu GH. Research progress of stem cell therapy for ischemic stroke. Ibrain. 2021;7(3):245-256. Published 2021 Sep. doi:10.1002/j.2769-2795.2021.tb00088.x https://pubmed.ncbi.nlm.nih.gov/37786797/
[21] Jiang B, Wang X, Ma J, et al. Remote ischemic conditioning after stroke: Research progress in clinical study. CNS Neurosci Ther. 2024;30(4):e14507. doi:10.1111/cns.14507 https://pubmed.ncbi.nlm.nih.gov/37927203/
[22] Wang M, Ran Y, Liang J, et al. Biomaterials-driven stem cell therapy for tissue repair and functional rehabilitation after ischemic stroke. Bioeng Transl Med. 2025;10(6):e70060. Published 2025 Nov. doi:10.1002/btm2.70060 https://pubmed.ncbi.nlm.nih.gov/41244328/
[23] Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater. 43:145-161. Published 2025 Jan. doi:10.1016/j.bioactmat.2024.09.016 https://pubmed.ncbi.nlm.nih.gov/39386225/
[24] Levitskaya AD, Martynov VV, Malashenko ND, Kamchatnov PR. [A patient with spontaneous dissection of the internal carotid artery]. Zh Nevrol Psikhiatr Im S S Korsakova. 2024;124(12. Vyp. 2):51-56. doi:10.17116/jnevro202412412251 https://pubmed.ncbi.nlm.nih.gov/39831363/
[25] Zhang K, Zhong J. Bio inspired technological performance in color Doppler ultrasonography and echocardiography for enhanced diagnostic precision in fetal congenital heart disease. SLAS Technol. 2024;29(6):100207. doi:10.1016/j.slast.2024.100207 https://pubmed.ncbi.nlm.nih.gov/39396732/
[26] Isufi A, Deriu MA, Shah STH, Pasqualini D. On the Horizon: What’s Next for Endodontics. Dent Clin North Am. 2025;69(4):603-616. doi:10.1016/j.cden.2025.05.007 https://pubmed.ncbi.nlm.nih.gov/41106913/
[27] Schreiber A, Hahn H, Wenzel M, Loch T. [Artificial intelligence : What do urologists need to know?] Urologe A. 2020;59(9):1026-1034. doi:10.1007/s00120-020-01294-7 https://pubmed.ncbi.nlm.nih.gov/32821957/
[28] Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand. 2022;146(4):362-368. doi:10.1111/ane.13616 https://pubmed.ncbi.nlm.nih.gov/35411571/
[29] Ubaida-Mohien C, Tanaka T, Tian Q, et al. Blood Biomarkers for Healthy Aging. Gerontology. 2023;69(10):1167-1174. doi:10.1159/000530795 https://pubmed.ncbi.nlm.nih.gov/37166337/
[30] Liu X, Li Y, Li W, et al. Diagnostic value of multimodal cardiovascular imaging technology coupled with biomarker detection in elderly patients with coronary heart disease. Br J Hosp Med (Lond). 2024;85(6):1-10. doi:10.12968/hmed.2024.0123 https://pubmed.ncbi.nlm.nih.gov/38941970/
[31] van Unnik JWJ, Ing L, Oliveira Santos M, McDermott CJ, de Carvalho M, van Eijk RPA. Remote Monitoring of Amyotrophic Lateral Sclerosis Using Digital Health Technologies: Shifting Toward Digitalized Care and Research? Neurology. 2025;105(1):e213738. doi:10.1212/WNL.0000000000213738 https://pubmed.ncbi.nlm.nih.gov/40460337/
[32] Libon DJ, Swenson R, Langford DT, et al. Precision neurocognition: An emerging diagnostic paradigm leveraging digital cognitive assessment technology. J Alzheimers Dis. 2025;108(1_suppl):S159-S169. doi:10.1177/13872877251325725 https://pubmed.ncbi.nlm.nih.gov/40262110/
[33] Wang L, Zhang B, Yang X, et al. Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact Mater. 20:126-136. Published 2023 Feb. doi:10.1016/j.bioactmat.2022.05.012 https://pubmed.ncbi.nlm.nih.gov/35663341/
[34] Wang L, Hou C, Li S, et al. Neuroprotective Nanoplatform Integrating Antioxidant MXene Nanozymes and Ferroptosis Inhibitors for Targeted Therapy of Cerebral Ischemia-Reperfusion Injury. Adv Sci (Weinh). :e16001. Published online Nov 21,2025. doi:10.1002/advs.202516001 https://pubmed.ncbi.nlm.nih.gov/41270210/
[35] Wesley MJ, Gundala Raja H, Shahid MS, et al. Neuroprotective Agents With Reperfusion Therapies in Ischemic Stroke: Evidence From Recent Randomized Trials. Cureus. 2025;17(7):e88443. Published 2025 Jul. doi:10.7759/cureus.88443 https://pubmed.ncbi.nlm.nih.gov/40842809/
[36] Vos EM, Geraedts VJ, van der Lugt A, et al. Systematic Review - Combining Neuroprotection With Reperfusion in Acute Ischemic Stroke. Front Neurol. 13:840892. Published 2022 None. doi:10.3389/fneur.2022.840892 https://pubmed.ncbi.nlm.nih.gov/35370911/
[37] Basalay MV, Davidson SM, Yellon DM. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues-Liraglutide and Semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661-667. doi:10.1007/s10557-019-06915-8 https://pubmed.ncbi.nlm.nih.gov/31721014/
[38] Wang LC, Wei WY, Ho PC, Wu PY, Chu YP, Tsai KJ. Somatosensory Cortical Electrical Stimulation After Reperfusion Attenuates Ischemia/Reperfusion Injury of Rat Brain. Front Aging Neurosci. 13:741168. Published 2021 None. doi:10.3389/fnagi.2021.741168 https://pubmed.ncbi.nlm.nih.gov/34867274/
[39] Cui J, Yang J, Liu L, Liu X, Ji X. Multimodal Neuroprotection in Ischemic Stroke: Emerging Non-Pharmacological Interventions from Bench to Bedside. Brain Sci. 2025;15(10). Published 2025 Oct 15. doi:10.3390/brainsci15101111 https://pubmed.ncbi.nlm.nih.gov/41154205/
[40] Romano DG, Frauenfelder G, Diana F, Saponiero R. Technical note and first results on JET 7 thromboaspiration device for T-ICA occlusions. BMC Neurol. 2022;22(1):258. Published 2022 Jul 12. doi:10.1186/s12883-022-02784-1 https://pubmed.ncbi.nlm.nih.gov/35820862/
[41] Schmidt RF, Sweid A, Mouchtouris N, et al. Predictors of first-pass reperfusion for mechanical thrombectomy in acute ischemic stroke. Clin Neurol Neurosurg. 219:107314. doi:10.1016/j.clineuro.2022.107314 https://pubmed.ncbi.nlm.nih.gov/35662056/
[42] Ospel JM, Volny O, Jayaraman M, McTaggart R, Goyal M. Optimizing fast first pass complete reperfusion in acute ischemic stroke - the BADDASS approach (BAlloon guiDe with large bore Distal Access catheter with dual aspiration with Stent-retriever as Standard approach). Expert Rev Med Devices. 2019;16(11):955-963. doi:10.1080/17434440.2019.1684263 https://pubmed.ncbi.nlm.nih.gov/31648562/
[43] Ni CF, Cheng SJ, Chen CY, Yeh TH, Hsieh KL. Added Value of Rescue Devices in Intra-Arterial Thrombectomy: When Should We Apply Them? Front Neurol. 12:689606. Published 2021 None. doi:10.3389/fneur.2021.689606 https://pubmed.ncbi.nlm.nih.gov/34421793/
[44] Zakharov VV, Vakhnina NV, Gogoleva AG. [The criteria for effectiveness of reperfusion therapy and neuroprotective therapy in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova. 2021;121(4):86-92. doi:10.17116/jnevro202112104186 https://pubmed.ncbi.nlm.nih.gov/34037360/
[45] Thomas KS, Puthooran DM, Edpuganti S, Reddem AL, Jose A, Akula SSM. Reperfusion injury in STEMI: a double-edged sword. Egypt Heart J. 2025;77(1):83. Published 2025 Sep 5. doi:10.1186/s43044-025-00683-7 https://pubmed.ncbi.nlm.nih.gov/40911117/
[46] Chi OZ, Chiricolo A, Liu X, Patel N, Jacinto E, Weiss HR. Inhibition of serum and glucocorticoid regulated kinases by GSK650394 reduced infarct size in early cerebral ischemia-reperfusion with decreased BBB disruption. Neurosci Lett. 762:136143. doi:10.1016/j.neulet.2021.136143 https://pubmed.ncbi.nlm.nih.gov/34332027/
[47] Kim HK, Lee JJ, Choi G, et al. Gadolinium-Based Neuroprognostic Magnetic Resonance Imaging Agents Suppress COX-2 for Prevention of Reperfusion Injury after Stroke. J Med Chem. 2020;63(13):6909-6923. doi:10.1021/acs.jmedchem.0c00285 https://pubmed.ncbi.nlm.nih.gov/32545964/
[48] Ito Y, Abumiya T, Komatsu T, et al. Neuroprotective effects of combination therapy of regional cold perfusion and hemoglobin-based oxygen carrier administration on rat transient cerebral ischemia. Brain Res. 1746:147012. doi:10.1016/j.brainres.2020.147012 https://pubmed.ncbi.nlm.nih.gov/32652148/
[49] Yang T, Jiang N, Han H, et al. Bibliometric Analysis of Stem Cells in Ischemic Stroke (2001-2022): Trends, Hotspots and Prospects. Int J Med Sci. 2024;21(1):151-168. Published 2024 None. doi:10.7150/ijms.86591 https://pubmed.ncbi.nlm.nih.gov/38164351/
[50] Guo Y, Peng Y, Zeng H, Chen G. Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int. 2021:9923566. Published 2021 None. doi:10.1155/2021/9923566 https://pubmed.ncbi.nlm.nih.gov/34221026/
[51] Oliva AA, McClain-Moss L, Pena A, Drouillard A, Hare JM. Allogeneic mesenchymal stem cell therapy: A regenerative medicine approach to geroscience. Aging Med (Milton). 2019;2(3):142-146. doi:10.1002/agm2.12079 https://pubmed.ncbi.nlm.nih.gov/31667462/
[52] Maldonado VV, Patel NH, Smith EE, et al. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng. 2023;17(1):44. Published 2023 Jul 11. doi:10.1186/s13036-023-00361-9 https://pubmed.ncbi.nlm.nih.gov/37434264/
[53] Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine. AAPS J. 2022;24(2):43. Published 2022 Mar 15. doi:10.1208/s12248-022-00692-3 https://pubmed.ncbi.nlm.nih.gov/35292878/
[54] Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-assisted macrophage cell therapy for regenerative medicine. Adv Drug Deliv Rev. 199:114979. doi:10.1016/j.addr.2023.114979 https://pubmed.ncbi.nlm.nih.gov/37394101/
[55] Bi Z, Tang H, Wang E, et al. Chinese medicine boosts regenerative medicine in stem cell - based therapy. Stem Cell Res Ther. 2025;16(1):499. Published 2025 Sep 25. doi:10.1186/s13287-025-04618-6 https://pubmed.ncbi.nlm.nih.gov/40999449/
[56] Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol. 2019;31(9):597-606. doi:10.1093/intimm/dxz021 https://pubmed.ncbi.nlm.nih.gov/30926983/
[57] Wu L, Xiong X, Wu X, et al. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front Mol Neurosci. 13:28. Published 2020 None. doi:10.3389/fnmol.2020.00028 https://pubmed.ncbi.nlm.nih.gov/32194375/
[58] Yu M, Li Y, Tan X, Hu Q. Steroid Receptor Coactivator-Interacting Protein (SIP) Alleviates Ischemic Cerebral Infarction Damage Through the NF-κB Pathway. Horm Metab Res. 2022;54(10):704-710. doi:10.1055/a-1913-8088 https://pubmed.ncbi.nlm.nih.gov/36055280/
[59] Var SR, Shetty AV, Grande AW, Low WC, Cheeran MC. Microglia and Macrophages in Neuroprotection, Neurogenesis, and Emerging Therapies for Stroke. Cells. 2021;10(12). Published 2021 Dec 16. doi:10.3390/cells10123555 https://pubmed.ncbi.nlm.nih.gov/34944064/
[60] Chen Y, Yang Y, Liu H, et al. Mechanisms and therapeutic potential of epithelial-immune crosstalk in airway inflammation. Expert Rev Clin Immunol. 2025;21(7):893-907. doi:10.1080/1744666X.2025.2514604 https://pubmed.ncbi.nlm.nih.gov/40452271/
[61] Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. Adv Neurobiol. 37:405-422. doi:10.1007/978-3-031-55529-9_23 https://pubmed.ncbi.nlm.nih.gov/39207705/
[62] Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci. 14:8. Published 2020 None. doi:10.3389/fncel.2020.00008 https://pubmed.ncbi.nlm.nih.gov/32076400/
[63] Kostecki KL, Harmon RL, Iida M, et al. Axl Regulation of NK Cell Activity Creates an Immunosuppressive Tumor Immune Microenvironment in Head and Neck Cancer. Cancers (Basel). 2025;17(6). Published 2025 Mar 15. doi:10.3390/cancers17060994 https://pubmed.ncbi.nlm.nih.gov/40149328/
[64] Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol. 14:1249644. Published 2023 None. doi:10.3389/fphar.2023.1249644 https://pubmed.ncbi.nlm.nih.gov/37915409/
[65] Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne). 16:1448750. Published 2025 None. doi:10.3389/fendo.2025.1448750 https://pubmed.ncbi.nlm.nih.gov/40182637/
[66] Cimmino G, Di Serafino L, Cirillo P. Pathophysiology and mechanisms of Acute Coronary Syndromes: atherothrombosis, immune-inflammation, and beyond. Expert Rev Cardiovasc Ther. 2022;20(5):351-362. doi:10.1080/14779072.2022.2074836 https://pubmed.ncbi.nlm.nih.gov/35510629/
[67] Li N, Hou X, Huang S, et al. Biomarkers related to immune checkpoint inhibitors therapy. Biomed Pharmacother. 147:112470. doi:10.1016/j.biopha.2021.112470 https://pubmed.ncbi.nlm.nih.gov/35074251/
[68] An HJ, Chon HJ, Kim C. Peripheral Blood-Based Biomarkers for Immune Checkpoint Inhibitors. Int J Mol Sci. 2021;22(17). Published 2021 Aug 30. doi:10.3390/ijms22179414 https://pubmed.ncbi.nlm.nih.gov/34502325/
[69] Shen Y, Li Y, Cao J, et al. Mechanisms of Immune Tolerance and Inflammation via Gonadal Steroid Hormones in Preterm Birth. Matern Fetal Med. 2023;5(4):229-237. Published 2023 Oct. doi:10.1097/FM9.0000000000000199 https://pubmed.ncbi.nlm.nih.gov/40406556/
[70] Bremer AS, Henschel N, Burkard H, Bernis ME, Ulas T, Sabir H. Transcriptomic profile of microglia following inflammation-sensitized hypoxic-ischemic brain injury in neonatal rats suggests strong contribution to neutrophil chemotaxis and activation. J Neuroinflammation. 2025;22(1):189. Published 2025 Jul 19. doi:10.1186/s12974-025-03516-1 https://pubmed.ncbi.nlm.nih.gov/40684206/