Recently, the transportation sector in China has gradually become the main source of urban air pollution and primary driver of carbon emissions growth. Considering air pollutants and greenhouse gases come from the same emission sources, it is necessary to establish an updated high-resolution emission inventory for the transportation sector in Central China, the most polluted region in China. The inventory includes on-road mobile, non-road mobile, oil storage and transportation, and covers 9 types of air pollutants and 3 types of greenhouse gases. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the emissions of pollutants were predicted for the period from 2020 to 2035 in different scenarios. Results showed that in 2020, emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, BC, OC, CO2, CH4, and N2O in Henan Province were 27.5, 503.2, 878.6, 20.1, 17.4, 222.1, 21.5, 9.4, 2.9, 92,077.9, 6.0, and 10.4 kilotons, respectively. Energy demand and pollutant emissions in Henan Province are simulated under four scenarios (Baseline Scenario (BS), Pollution Abatement Scenario (PA), Green Transportation Scenario (GT), and Reinforcing Low Carbon Scenario (RLC)). The collaborative emission reduction effect is most significant in the RLC scenario, followed by the GT scenario. By 2035, under the RLC scenario, energy consumption and emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, CO2, CH4, and N2O are projected to decrease by 72.0%, 30.0%, 55.6%, 56.0%, 38.6%, 39.7%, 51.5%, 66.1%, 65.5%, 55.4%, and 52.8%, respectively. This study provides fundamental data support for subsequent numerical simulations.