近日,来自国家应急防控药物工程技术研究中心,国家安全特需药品全国重点实验室的研究团队与华北理工大学研究团队合作在国际权威药物化学期刊《Journal of Medicinal Chemistry》上发表了一篇题为“Discovery of Novel Potent Triple IKZF1/2/3 Degraders for the Treatment of Hematological Cancers”的研究论文(DOI: 10.1021/acs.jmedchem.5c01086)。该研究通过系统的理性设计及构效优化、体外/体内机制验证及小鼠模型疗效评估,获得全新酞嗪酮为骨架的新型强效IKZF1/2/3三重分子胶降解剂MGD-22,可显著抑制肿瘤生长(TGI达97.28%),无明显毒性,且与布鲁顿酪氨酸激酶(BTK)抑制剂和B细胞淋巴瘤-2(BCL-2)抑制剂联合使用时具有显著的协同效应。该研究为血液系统癌症治疗提供了新候选药物和多靶点降解策略,为克服现有度胺药物耐药性提供了的新解决方案。01 研究背景:传统度胺类药物的困境与突破方向分子胶降解剂是一类能够诱导蛋白质-蛋白质相互作用(PPI),利用人体内天然存在的泛素-蛋白酶系统特异性地靶向降解某种疾病相关蛋白的小分子化合物 [1]。血液肿瘤的发生与发展,常与造血细胞中关键转录因子的异常激活密切相关。其中,IKZF家族(IKZF1、IKZF2、IKZF3)作为重要的锌指转录因子,在造血系统发育和肿瘤细胞生存中起关键作用[2]。传统度胺类药物(IMiDs)如沙利度胺、来那度胺、泊马度胺通过招募CRBN形成 E3 连接酶复合物,诱导IKZF1、IKZF3等转录因子降解发挥作用,广泛用于血液系统癌症(如多发性骨髓瘤(MM)、急性髓系白血病(AML)、弥漫性大 B 细胞淋巴瘤(DLBCL)等)治疗,但现有 IMiDs 及下一代 CELMoDs(如 CC-220、CC-885、CC-82480)因结构相似性易引发耐药,其次血液毒性(如中性粒细胞减少、肝损伤)等问题限制临床应用,需开发新型 CRBN 调节剂以拓展治疗潜力 [3]。02 研究内容① 全新骨架先导物发现与结构优化从 160 余万个化合物中筛选出含戊二酰亚胺结构的候选分子,通过表型筛选发现phthalazinone(酞嗪酮)骨架(如 MGD-1f)相比传统邻苯二甲酰亚胺,能更高效结合CRBN与IKZF家族蛋白,同时诱导IKZF1/2/3降解,尤其对IKZF2的降解活性提升显著,而 IKZF2 在白血病干细胞存活、肿瘤进展中至关重要 [4]。MGD-1f在急性髓系白血病(MV-4-11)细胞中IC50 < 1 μM,且对IKZF2降解率(27.7%)显著高于泊马度胺(< 10%)。分子对接显示,MGD-1f 能占据CRBN与IKZF2的结合界面,促进三元复合物的形成。为提升MGD-1f的活性,研究团队开展“结构-活性关系(SAR)”分析,通过修饰分子结构增强与靶蛋白的相互作用:l环结构调整:将MGD-1f 酞嗪酮环中的碳氮双键(C=N)还原为单键(C-N),得到MGD-3a,增加分子柔性;进一步引入甲基(MGD-3b),利用疏水作用增强与CRBN的结合,对IKZF2降解率提升至48.4%,对多发性骨髓瘤(NCI-H929)细胞的IC50降至0.379 μM。l取代基优化:在酞嗪酮的5位引入芳香胺基团(如MGD-4),通过π-π堆叠作用增强与IKZF2的结合,对IKZF2降解率大于50%;延长侧链并引入甲基苯(MGD-15),对IKZF2降解率提升至70%,对弥漫性大B细胞淋巴瘤(WSU-DLCL-2)细胞的IC50降至0.172 μM;l侧链拓展:在MGD-15的结构基础上引入吗啉、哌嗪等基团,进一步增强与 IKZF2的π-π堆叠作用(如MGD-18),进一步增强对IKZF1/2/3的降解作用,对NCI-H929和WSU-DLCL-2细胞的IC50降至0.0299和0.0805 μM;(A) Substrate scope of glutarimide analogues, thalidomide, lenalidomide and pomalidomide in IKZF1, IKZF2 and IKZF3 in engineered HEK293T cells using the respective HiBit assays. Cells were treated with 1 μM concentration of each compound for 24 h. (B) The docking model of MGD-1f to the IKZF2 (orange)-CRBN (green) derived from the Protein Data Bank (PDB: 7LPS).② 高效抑制肿瘤,克服耐药性经过多轮优化最终获得MGD-22,通过独特的分子结构稳定结合CRBN,脂肪族叔胺与CRBN的Glu377形成盐桥,增强结合亲和力,进而招募 IKZF1/2/3实现“三重降解”,且活性达到纳摩尔级别。MGD-22抑制NCI-H929、MV-4-11、WSU-DLCL-2细胞增殖IC50值为0.005-0.009 μM,远优于传统药物,且对泊马度胺耐药的肿瘤细胞仍有效(IC50值为0.04-0.08 μM)。对正常细胞如外周血单核细胞(PBMCs)、原代B细胞毒性低,IC50 > 33 μM。Evaluation of analogues MGD-16 to MGD-22. (A) The binding mode of MGD-15 interacts to the IKZF2-CRBN. PDB ID: 7LPS. (B) IC50 values of Chemical structures of MGD-15-based derivates (MGD-16 to MGD-22), lenalidomide (Len) and pomalidomide (Pom) in NCI-H929, MV-4-11 and WSU-DLCL-2 cells for 96 h. (C) Substrate scope of analogues MGD-16 to MGD-22, lenalidomide (Len) and pomalidomide (Pom) in IKZF1, IKZF2 and IKZF3 in engineered HEK293T cells using the respective HiBit assays. (D) Model of IKZF2 (orange), CRBN (green), and MGD-22 projecting a π-π system cloud from an aromatic substitution. The model was derived from PDB: 7LPS. (E) Western blot analysis of Ikaros family members in NCI-H929 (left) and MV-4-11 (right) cells treated with indicated doses of MGD-20, MGD-21, MGD-22 and pomalidomide (Pom) for 24 h.③ 精准高效降解靶点,机制明确蛋白组及IKZFs-HiBit定量模型结果表明,MGD-22特异性诱导IKZF1/2/3降解,对IKZF1/2/3的半数降解浓度(DC50)值分别为8.33 nM、9.91 nM、5.74 nM,24小时内可降解超过90%的靶蛋白,选择性优异。CRBN敲除细胞中MGD-22丧失降解能力,蛋白酶体抑制剂(MG132),泛素激活酶(E1)酶抑制剂(TAK-243)或NEDD8 活化酶 (NAE) 抑制剂(MLN4924)阻断降解选择性降解,表明MGD-22通过Cullin-CRBN通路诱导IKZF1/2/3的降解。MGD-22 selectively induces significant degradation of Ikaros proteins. (A) Proteomics analysis of NCI-H929 cells treated for 4 h with MGD-22 (1 μM) or DMSO. (B) Heatmap showing the ratio of global neosubstrates in whole-proteome quantification. (C) Levels of IKZF1, IKZF2 and IKZF3 in engineered HEK293T (293T) cells with increasing doses of MGD-22 for 24 h as determined by IKZF1-, IKZF2- and IKZF3-HiBit assay, respectively. (D) Levels of IKZF1, IKZF2 and IKZF3 in engineered HEK293T cells with increasing treatment time of MGD-22 (1 µM) as determined by IKZF1-, IKZF2- and IKZF3-HiBit assay, respectively. MGD-22 induces significant degradation of Ikaros proteins via the Cullin-CRBN dependent pathway. (A) Viability of control vector and CRBN−/− NCI-H929 cells treated with MGD-22 for 96 h. (B) Western blot analysis of IKZF1, IKZF2 and IKZF3 degradation in NCI-H929 cells CRBN knockout, pre-treated with TAK-243 (1 µM), MLN4924 (1 µM) or MG132 (1 µM) for 1 h and treated with MGD-22 (1 µM) for 24 h. C. Viability assay performed in MV-4-11 cells treated with increasing doses of MGD-22 for 96 h in the absence and presence of pomalidomide (Pom, 10 µM). (D, E) Flow cytometry plot showing control vector and CRBN−/− NCI-H929 cells treated with indicated doses of MGD-22 or pomalidomide (Pom) for 3 days, and cells were stained with Annexin V-PE and DAPI (D). Apoptosis was measured by flow cytometry using Annexin V as a marker (E). ⑤ 体内疗效显著,药代性质及安全性良好在NCI-H929小鼠异种移植模型中,MGD-22(10mg/kg,口服)的肿瘤生长抑制率(TGI)达97.28%,显著优于传统药物泊马度胺(69.74%),肿瘤组织Western blot证实IKZF1/2/3降解。长期给药后,小鼠体重无明显下降,无严重毒性反应。MGD-22药代性质良好,口服生物利用度39.4%,达峰时间(Tmax)1.0 h,清除率和分布容积适中。MGD-22 exhibited high efficiency in MM tumor xenograft. (A) Treatment schedule for the NCI-H929 cells xenograft tumors model treated with vehicle, pomalidomide and MGD-22, respectively. (B, C) Immunodeficiency NOD/SCID mice transplanted with NCI-H929 cells were orally administrated vehicle control, pomalidomide (Pom) or MGD-22 with single doses of 3 mg/kg or 10 mg/kg for 14 days. The change of NCI-H929 tumor volume (B) and change of body weight (C) of all mice in each group were shown (n = 8 per group). (D) Tumor volumes and TGI after treatment for 14 days of each group in (B) are shown. (E, F) Representative images of H&E, Ki67, and cleaved-caspase 3 immunohistochemical (IHC) staining in harvested tumors from each group in (B) are shown (E). Histograms show the quantification of Ki67+ and cleaved-caspase 3+ cells (F). (G) Western blot analysis of CRBN, IKZF1, IKZF2 and IKZF3 in harvested tumors or their mixture (#M, n = 8) from each group were shown.⑥ 协同治疗增效,拓宽应用场景研究发现,MGD-22与现有靶向药物BTK抑制剂(伊布替尼)、BCL-2抑制剂(维奈托克)联合使用时,协同评分(SS)均超10,在弥WSU-DLCL-2模型中,TGI达92.69%,显著高于单药(MGD-2单药77.47%,伊布替尼单药46.71%);与BCL-2抑制剂(维奈托克)联合TGI达97.76%,显著高于单药维奈托克(61.88%)且显著延长小鼠生存期。Synergetic effect of MGD-22 with standard therapeutic agents in inhibiting DLBCL cell growth. (A, B) Effect of MGD-22, Ibrutinib, Venetoclax or drug combination on viability of WSU-DLCL-2 cells (A). Three-dimensional synergy score heatmaps for MGD-22 plus Ibrutinib (left) or Venetoclax (right) in WSU-DLCL-2 cells calculated using SynergyFinder (B). (C) Treatment schedule for the WSU-DLCL-2 cells xenograft tumors model treated with vehicle, MGD-22, Ibrutinib, Venetoclax or drug combination. (D, F) NOD/SCID mice transplanted with WSU-DLCL-2 cells were orally administrated with single agent MGD-22, Ibrutinib, Venetoclax or combinational treatment of MGD-22 + Ibrutinib and MGD-22 + Venetoclax for 36 days. The change of WSU-DLCL-2 tumor volume (D) of all mice in each group were shown. Tumor volumes and TGI after treatment for 21 days of each group in (C) are shown (n = 7 per group). Change of body weight (F) of all mice in each group were shown (n = 7 per group). (G) Survival rates for mice treated as in (C) were shown (log-rank test; n = 7 per group). 03 研究总结:为血液肿瘤提供新的治疗策略本研究发现了一种新型强效IKZF1/2/3三靶点分子胶降解剂MGD-22,其在多种血液瘤细胞中展现出纳摩尔级IC50抑制活性,克服现有IMiDs耐药性并降低毒性,且与标准疗法联用展现显著协同效应,为血液肿瘤治疗提供候选药物。MGD-22的发现不仅验证了IKZFs三重降解策略的可行性,“骨架创新+精细修饰”的设计策略也为新一代分子胶降解剂的开发提供新思路。原文链接:https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01086参考文献(1). Wu H, Yao H, He C, Jia Y, Zhu Z, Xu S, et al. Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B. 2022;12(9):3548-66.(2). Chen Q, Shi Y, Chen Y, Ji T, Li Y, Yu L. Multiple functions of Ikaros in hematological malignancies, solid tumor and autoimmune diseases. Gene. 2019;684:47-52.(3). Feng Y, Hu X, Wang X. Targeted protein degradation in hematologic malignancies: clinical progression towards novel therapeutics. Biomark Res. 2024;12(1).(4). Park S-M, Cho H, Thornton AM, Barlowe TS, Chou T, Chhangawala S, et al. IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell. 2019;24(1):153-65.声明:发表/转载本文仅仅是出于传播信息的需要,并不意味着代表本公众号观点或证实其内容的真实性。据此内容作出的任何判断,后果自负。若有侵权,告知必删!长按关注本公众号 粉丝群/投稿/授权/广告等请联系公众号助手 觉得本文好看,请点这里↓