6539 Background: In many instances, trials may offer the best or only therapeutic option for patients with rare findings. However, conducting clinical trials of novel therapeutics targeting rare molecular variants is challenging. Patient populations are small, distributed, and predominantly in community settings where trial access remains limited by awareness and site availability. These challenges increase costs of drug development and approval, delaying widespread patient access. Methods: Foundation Medicine deployed a trial education and access program, “Precision Enrollment,” with Ignyta (a trial sponsor) and Pharmatech (a site management organization, or SMO, enabling “Just-In-Time” clinical trials) (Wiener, JCO 2007). Infrastructure and algorithms developed at Foundation Medicine (“SmartTrials Engine”) matched sequenced patients (avg n = 800/wk) with activating NTRK, ROS1, or ALK fusions to the phase II study of Entrectinib (NCT02568267). Oncologists at Foundation Medicine, through peer-to-peer outreach, facilitated trial access by providing trial and nearest site information to treating providers of matched patients. Results: 107 treatment-eligible patients with NTRK, ROS1, or ALK fusions were matched by the SmartTrials Engine; 36 (33%) expressed interest in trial participation. One such patient with NSCLC and a CD74-ROS1 fusion was unable to participate at an open trial site due to inability to travel. The patient’s site was part of the “Just-In-Time” network, with IRB and contract pre-approval, and was activated in only 3 days. Total time from patient identification to initiation of therapy was 7 days. Conclusions: We demonstrate a novel methodology for patient matching to trials targeting rare genomic findings, including in community settings. If extended, such innovative partnerships combined with computational matching infrastructure, could improve drug development and therapeutic access.