Oral drug delivery, the most patient friendly administration route offers convenience and compliance but faces formidable biological barriers. Enzymatic degradation, mucosal entrapment, efflux transport and extensive first-pass metabolism drastically reduce the effectiveness of sensitive therapeutics including peptides, proteins, nucleic acids and vaccines. Conventional formulations often fail to overcome these challenges highlighting the need for innovative approaches. Biomimetic drug delivery has emerged as a transformative strategy. By emulating structures and functions from cells, membranes, exosomes, viruses and gut microbiota these systems achieve immune evasion, mucus penetration, site-specific targeting and stimulus-responsive release. Such approaches improve formulation stability and in vivo absorption but also promise precise and patient centric therapies. This review provides a comprehensive overview of biomimetic oral systems highlighting their mechanisms, design principles and translational potential. Recent advances include cell membrane-coated nanoparticles for tumor targeting and immune modulation, exosome-inspired carriers for protein and RNA transport, virus-like particles (VLPs) for oral vaccines, and mucoadhesive or mucus-penetrating polymers modeled on pathogen strategies. Complementary pH, enzyme and redox-responsive platforms exploit gastrointestinal (GI) microenvironments to ensure controlled release. Emerging tools such as bioinspired computational modeling, 3D/4D printing, organoid-on-chip models and CRISPR/Cas-based platforms accelerate optimization and clinical translation. Although most technologies remain in preclinical development, early findings demonstrate superior pharmacokinetics, therapeutic efficacy, and safety over conventional systems. This article critically examines biomimetic oral drug delivery addressing advances and underlying mechanisms including regulatory considerations and future directions. They stand poised to form the foundation of next-generation precision therapeutics.